How to prove that motion is periodic but not simple harmonic?

Click For Summary
SUMMARY

The discussion focuses on proving that the function ##x = \sin(\omega t) + \sin(2\omega t) + \sin(4\omega t)## is periodic but not simple harmonic motion (SHM). Participants analyze the individual components of the function, noting that while each sine term represents SHM, their sum does not satisfy the condition ##\ddot x = -\Omega^2 x## required for SHM. The periodicity of the function is established with a period of ##T = \frac{2\pi}{\omega}##, but it is concluded that the function does not exhibit the characteristics of SHM due to the varying acceleration terms derived from the second derivative.

PREREQUISITES
  • Understanding of trigonometric functions and their properties
  • Knowledge of simple harmonic motion (SHM) and its mathematical representation
  • Familiarity with calculus, particularly differentiation and second derivatives
  • Ability to interpret and analyze graphical representations of functions
NEXT STEPS
  • Explore the characteristics of simple harmonic motion and its mathematical conditions
  • Learn about the superposition principle in wave functions and its implications
  • Study the graphical representation of trigonometric functions and their combinations
  • Investigate the relationship between periodic functions and their derivatives
USEFUL FOR

Students and professionals in physics and engineering, particularly those studying wave mechanics, oscillations, and mathematical modeling of periodic phenomena.

  • #31
erobz said:
parity refers to even-odd
This is getting complex for me. But I'll try to figure it out.
 
Physics news on Phys.org
  • #32
vcsharp2003 said:
This is getting complex for me. But I'll try to figure it out.
Just plot it first like @kuruman suggested.
 
  • #33
Vanadium 50 said:
Is there a number I can add to t to get the same x? What if I add 2t? 3t?
Did you mean,
Is there a number, T, I can add to t to get the same x? What if I add 2T? 3T?
 
  • #34
vcsharp2003 said:
I get the following, after taking, second derivative of ##x## wrt ##t##.

##a= -\omega ^2 x -\omega ^2 (3 sin{(2\omega t)} + 15sin {(4\omega t)})##

Since for SHM, ##a= -\omega ^2 x##, so it's not SHM after looking at the above equation for ##a##. Is that correct reasoning?
It's not quite that simple. As @TSny pointed out in post #8, ##\omega## is a value given in the equation of motion. To show it is not SHM you need to show there is no value ##\Omega## for which ##\ddot x+\Omega^2x=0##.
 
  • Like
Likes vcsharp2003, member 731016 and TSny
  • #35
haruspex said:
It's not quite that simple. As @TSny pointed out in post #8, ##\omega## is a value given in the equation of motion. To show it is not SHM you need to show there is no value ##\Omega## for which ##\ddot x+\Omega^2x=0##.
Can't we just put ##t=1## in the equation obtained for ##a##, which would result in ## a(1)= -w^2 x(1) + c## where ##c## is some non-zero number and so clearly ##a## is not proportional to ##x##? Also, we could use ##\omega = 1## in the acceleration equation since ##\omega## can be any value other than zero.
 
Last edited:
  • #36
kuruman said:
So it seems. But are the two the same kind of zero in the sense that ##\sin(\omega t)## crosses the axis going the same way? That's why I suggested that you plot this thing.
I have tried to plot the 3 graphs of ##y=sin{x}## in bold black, ## y= sin{2x}## in normal black and ##y=sin{4x}## in bold blue as shown below.

It seems that the combination of these 3 graphs will repeat every 360° or 2π radians. We can't say the combination will repeat every 180° or π radians since the graph of ##y = sin x## is inverted after 180° even though the patterns of ## y= sin{2x}## and ## y= sin{4x}## graphs are repeating every 180°. The superposition of multiple graphs depends entirely on the pattern of individual graphs; so, if patterns of graphs do not change then the superposition of these graphs will not change.
From above explanation, we can say that motion is periodic with a time period equal to the time period of ##y= sin {\omega t}## which is ##T= \dfrac {2\pi}{\omega}##.

CamScanner 02-23-2023 13.24.jpg
 
Last edited:
  • #37
vcsharp2003 said:
Can't we just put ##t=1## in the equation obtained for ##a##, which would result in ## a(1)= -w^2 x(1) + c## where ##c## is some non-zero number and so clearly ##a## is not proportional to ##x##?
No, that does not follow. If you plug in a value for t (ω being some constant) then x and a are also just numbers. To check for proportionality, you need to compare two things that are varying.
 
  • #38
haruspex said:
No, that does not follow. If you plug in a value for t (ω being some constant) then x and a are also just numbers. To check for proportionality, you need to compare two things that are varying.
I see. Then, do you have any hint on how to go about this and prove that ##a## is not proportional to ##x##? I have zero background in differential equations.
 
Last edited:
  • #39
vcsharp2003 said:
I see. Then, do you have any hint on how to go about this and prove that ##a## is not proportional to ##x##? I have zero background in differential equations.
In ##\ddot x+\Omega^2x=0##, what does doubling x do to a? In your equation in post #18, does doubling x do the same to a?
 
  • Like
Likes vcsharp2003
  • #40
haruspex said:
In ##\ddot x+\Omega^2x=0##, what does doubling x do to a? In your equation in post #18, does doubling x do the same to a?
If ##x## is doubled then so should ##a## since ##a## is directly proportional to ##x##.

The acceleration equation mentioned in post#18 would not double ##a## if ##x## was replaced by ##2x##, due to the term appearing after ##-\omega^2 x##.
 
  • #41
vcsharp2003 said:
I have tried to plot the 3 graphs of ##y=sin{x}## in bold black, ## y= sin{2x}## in normal black and ##y=sin{4x}## in bold blue as shown below.

It seems that the combination of these 3 graphs will repeat every 360° or 2π radians. We can't say the combination will repeat every 180° or π radians since the graph of ##y = sin x## is inverted after 180° even though the patterns of ## y= sin{2x}## and ## y= sin{4x}## graphs are repeating every 180°. The superposition of multiple graphs depends entirely on the pattern of individual graphs; so, if patterns of graphs do not change then the superposition of these graphs will not change.
From above explanation, we can say that motion is periodic with a time period equal to the time period of ##y= sin {\omega t}## which is ##T= \dfrac {2\pi}{\omega}##.

View attachment 322760
Although a plot generated by computer (there are many free online plotting apps) would have been better, I think you have grasped the idea and expressed it in your own words which is good.

You have found that the period of this function is ##T=2\pi/\omega##. Now you have to show that the function is not harmonic. Others have suggested to show that the equation ##\dfrac{d^2x}{dt^2}=-\Omega^2 x## where ##\Omega## is constant does not hold for all values of ##t##. That's a good way to do it. However you might also consider how many harmonic functions there are that have the same period ##T=2\pi/\omega## (or frequency ##\omega##), make a list with their mathematical expressions and see if ##x## is on the list. If it's not, then ##x## is not harmonic.
 
  • Like
Likes vcsharp2003
  • #42
kuruman said:
Although a plot generated by computer (there are many free online plotting apps) would have been better,
I used an online plotter after reading your answer and I get a graph as below, which clearly is not sinusoidal and therefore, not SHM but it's periodic since a pattern in the graph is being constantly repeated.

Screenshot_20230223-221552.jpg

kuruman said:
Others have suggested to show that the equation d2xdt2=−Ω2x where Ω is constant does not hold for all values of t.
Ok. I'll try to substitute an appropriate value ##\dfrac {3\pi}{2\omega}## in the equation of ##x## as well as of ##a##, and then verify if the differential equation is satisfied.
 
Last edited:
  • #43
vcsharp2003 said:
I get the following, after taking, second derivative of ##x## wrt ##t##.

##a= -\omega ^2 x -\omega ^2 (3 sin{(2\omega t)} + 15sin {(4\omega t)})##

I don't see how you are getting the factors of 3 and 15.

You are given ##x = sin{\omega t} + sin{2\omega t} + sin{4\omega t}##.

Take the time derivative of both sides. What do you get for ##\dot x##?

Repeat to get an expression for ##\ddot x##.
 
  • #44
TSny said:
I don't see how you are getting the factors of 3 and 15.

You are given ##x = sin{\omega t} + sin{2\omega t} + sin{4\omega t}##.

Take the time derivative of both sides. What do you get for ##\dot x##?

Repeat to get an expression for ##\ddot x##.
I tried again and get the following as shown in the screenshot.

CamScanner 02-23-2023 13.24_2.jpg
 
  • #45
vcsharp2003 said:
I tried again and get the following as shown in the screenshot.
1677178463448.png

OK. You have $$\ddot x = -\omega^2 \sin \omega t - 4 \omega^2 \sin 2\omega t -16 \omega^2\sin 4 \omega t$$
If the motion is SHM, then there must exist a number ##\Omega## such that ##\ddot x = -\Omega^2 x##. That is, $$\ddot x =-\Omega^2 \sin \omega t - \Omega^2 \sin 2\omega t - \Omega^2\sin 4 \omega t$$ So there must be an ##\Omega## such that $$\Omega^2 \sin \omega t + \Omega^2 \sin 2\omega t + \Omega^2\sin 4 \omega t = \omega^2 \sin \omega t + 4 \omega^2 \sin 2\omega t +16 \omega^2\sin 4 \omega t$$ and this must hold for all times ##t##.
 
  • #46
TSny said:
So there must be an Ω such that Ω2sin⁡ωt+Ω2sin⁡2ωt+Ω2sin⁡4ωt=ω2sin⁡ωt+4ω2sin⁡2ωt+16ω2sin⁡4ωt and this must hold for all times
Can we not say from the equation that there is no such ##\Omega## since the coefficients of sine terms on RHS are not equal?
 
  • #47
vcsharp2003 said:
Can we not say from the equation that there is no such ##\Omega## since the coefficients of sine term on RHS are not equal?
OK. But if you've never really proven this sort of thing, then it would be good to provide a proof.
For example, what does the relation tell you when ##t## is such that ##\omega t = \pi/2##? Repeat for ##\omega t = \pi/4##.
 
  • #48
TSny said:
OK. But if you've never really proven this sort of thing, then it would be good to provide a proof.
For example, what does the relation tell you when ##t## is such that ##\omega t = \pi/2##? Repeat for ##\omega t = \pi/4##.
I did what you suggested and get the following. But, I don't get what it achieves?

When ##\omega t = \dfrac {\pi}{2}## then ## \Omega^2 = \omega^2##.

When ##\omega t = \dfrac {\pi}{4}## then ## \Omega^2 (\dfrac {1}{\sqrt{2}} + 1) = \omega^2 (\dfrac {1}{\sqrt{2}} + 4)##.

So ##\omega## and ##\Omega## are inconsistent in their relationship.

I hope it could be explained more simply as it's just getting too complex.
 
  • #49
vcsharp2003 said:
I did what you suggested and get the following. But, I don't get what it achieves?

When ##\omega t = \dfrac {\pi}{2}## then ## \Omega^2 = \omega^2##.

When ##\omega t = \dfrac {\pi}{4}## then ## \Omega^2 (\dfrac {1}{\sqrt{2}} + 1) = \omega^2 (\dfrac {1}{\sqrt{2}} + 4)##.

So ##\omega## and ##\Omega## are inconsistent in their relationship.
Yes, that is right.
 
  • #50
@vcsharp2003
Your answer to @haruspex in post #40 is actually a good way to show that it's not SHM. Sorry that I did not see that sooner.
 
  • #51
TSny said:
@vcsharp2003
Your answer to @haruspex in post #40 is actually a good way to show that it's not SHM. Sorry that I did not see that sooner.
I put the second derivative in the following form.

##a= -\omega ^2 x -\omega ^2 (3 sin{(2\omega t)} + 15sin {(4\omega t)})##

Isn't that clearly saying ##a## is simply not ##a= -\omega ^2 x##. If it were SHM, then we would have got ##a= -\omega ^2 x##, but we didn't. To me that is so obvious. Based on the above fact, clearly it's not SHM.

No need of ultra-complex proofs and other logic.
 
  • #52
vcsharp2003 said:
I put the second derivative in the following form.

##a= -\omega ^2 x -\omega ^2 (3 sin{(2\omega t)} + 15sin {(4\omega t)})##

Isn't that clearly saying ##a## is simply not ##a= -\omega ^2 x##.
Yes, but as pointed out, you need to show there does not exist any constant, A, the given ##\omega## or otherwise, for which ##\ddot x=-A^2x##. Post #40 does that.
 
  • Like
Likes vcsharp2003

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 17 ·
Replies
17
Views
3K
Replies
16
Views
2K
Replies
25
Views
1K
  • · Replies 13 ·
Replies
13
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 13 ·
Replies
13
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K