MHB Solve for $a^2$ in $u_{xx} = u_{tt}$ using $u_1$ and $u_2$

  • Thread starter Thread starter karush
  • Start date Start date
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
1000
Find $a^2 u_{xx} = u_{tt} $ if $\lambda$ a real number.
If
$u_1\left(x, t\right)=\sin\left({\lambda x}\right)\sin\left({\lambda at}\right)$
And
$u_2 \left(x, t\right)={e}^{-a^2 \lambda ^2 t}\sin\left({\lambda x}\right)$

I didn't know how to deal with the $a^2$
 
Last edited:
Physics news on Phys.org
karush said:
Find $a^2 u_{xx} = u_{tt} $ if $\lambda$ a real number.
If
$u_1\left(x, t\right)=\sin\left({\lambda x}\right)\sin\left({\lambda at}\right)$
And
$u_2 \left(x, t\right)={e}^{-a^2 \lambda ^2 t}\sin\left({\lambda x}\right)$

I didn't know how to deal with the $a^2$

What do you mean "find" this differential equation? Are you trying to solve it? Or are you trying to show that u1 and u2 are possible solutions?
 
Yes sorry
Are $u^1$ and $u^2$ possible solutions
On the calculator I got
$${u}_{xx}=-\lambda^2\sin\left({\lambda x}\right) $$
So $\alpha$ disappeared
 
Last edited:
karush said:
Yes sorry
Are $u^1$ and $u^2$ possible solutions
On the calculator I got
$${u}_{xx}=-\lambda^2\sin\left({\lambda x}\right) $$
So $\alpha$ disappeared

It can't disappear. The entire $\displaystyle \begin{align*} \sin{ \left( \lambda \, a\, t \right) } \end{align*}$ term is a constant when differentiating partially with respect to x.
 
Since $u_{xx}=-\lambda^2 \sin\left({\lambda x}\right)\sin\left({a\lambda t}\right)$

and

$u_{tt}=-a^2 \lambda^2 \sin\left({\lambda x}\right)\sin\left({a\lambda t}\right)$

Then $a^2 u_{xx}=u_{tt } $
I hope
 
karush said:
Since $u_{xx}=-\lambda^2 \sin\left({\lambda x}\right)\sin\left({a\lambda t}\right)$

and

$u_{tt}=-a^2 \lambda^2 \sin\left({\lambda x}\right)\sin\left({a\lambda t}\right)$

Then $a^2 u_{xx}=u_{tt } $
I hope

Yes that is correct :)

Can you do the other part of the question?
 
Thread 'Direction Fields and Isoclines'
I sketched the isoclines for $$ m=-1,0,1,2 $$. Since both $$ \frac{dy}{dx} $$ and $$ D_{y} \frac{dy}{dx} $$ are continuous on the square region R defined by $$ -4\leq x \leq 4, -4 \leq y \leq 4 $$ the existence and uniqueness theorem guarantees that if we pick a point in the interior that lies on an isocline there will be a unique differentiable function (solution) passing through that point. I understand that a solution exists but I unsure how to actually sketch it. For example, consider a...

Similar threads

Replies
3
Views
2K
Replies
1
Views
1K
Replies
28
Views
4K
Replies
2
Views
2K
Replies
2
Views
2K
Replies
4
Views
2K
Replies
1
Views
2K
Back
Top