MHB Solve for k in System of Equations

wonguyen1995
Messages
13
Reaction score
0
Find k to have a solution?
x-3y=6
x+3z=-3
2x+kx+(3-k)z=1LATEX
 
Mathematics news on Phys.org
wonguyen1995 said:
Find k to have a solution?
x-3y=6
x+3z=-3
2x+kx+(3-k)z=1LATEX

Have you thought about what role the determinant would play?
 
dwsmith said:
Have you thought about what role the determinant would play?

of course I think it should better if i have sample of solution. i will research carefully on this.
 
wonguyen1995 said:
of course I think it should better if i have sample of solution. i will research carefully on this.

We know the matrix
\[
\begin{bmatrix}
1&-3&0\\
1&0&3\\
2&k&3-k
\end{bmatrix}
\]
has unique solution if the determinant is what?
Second, if the determinant is zero, we have no solutions or infinitely many solutions.

We have two approaches. One assume the determinant is nonzero and find k that makes it invertible or assume the determinant is zero and try to find a k such that we have infinitely many solutions.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
7
Views
2K
Replies
1
Views
1K
Replies
1
Views
1K
Replies
5
Views
1K
Replies
8
Views
1K
Replies
11
Views
2K
Replies
2
Views
2K
Back
Top