This is my working,
##\frac {2^{3m} + 3^{3m}}{(2 ⋅2 ⋅3)^m +(2⋅3⋅3)^m}##= ##\frac {7}{6}##
##\frac {2^{3m} + 3^{3m}}{(2^{2m}⋅3^m + 2^m ⋅3^{2m}}##= ##\frac {7}{6}##
now using the following properties,
##(a+b)(a-b)=a^2-b^2##
##(a^2-b^2)(a-b)##=##a^3-a^2b-ab^2+b^3##
##(a^2-b^2)(a-b)+a^2b+ab^2=a^3+b^3##
therefore, we shall have;
##\frac {(2^{2m} - 3^{2m})(2^m - 3^m)+2^{2m} 3^m +2^m3^{2m}}{(2^{2m}⋅ 3^m + 2^m⋅ 3^{2m}}##= ##\frac {7}{6}##
##\frac {(2^{2m} - 3^{2m})(2^m - 3^m)+2^m 3^m(2^m +3^m)}{(2^m⋅ 3^m (2^m+ 3^m)}##= ##\frac {7}{6}##
##\frac {(2^m + 3^m)(2^m-3^m)(2^m-3^m)+2^m3^m(2^m+3^m)}{(2^m ⋅3^m (2^m+ 3^m)}##= ##\frac {7}{6}##
##\frac {(2^m - 3^m)(2^m-3^m)+2^m3^m}{2^m. 3^m }##= ##\frac {7}{6}##
##6⋅2^{2m} + 6 ⋅3^{2m} - 6 ⋅2^m⋅3^m = 7⋅2^m⋅3^m##
##6⋅2^{2m} + 6⋅3^{2m} =13⋅2^m⋅3^m##
let ##a=2^m## and ##b=3^m## then it follows that,
##6a^2+6b^2=13ab##
##6a^2-13ab+6b^2=0##
##(2a-3b)(3a-2b)=0##
From,##2a-3b=0##,it follows that,
##\frac {a}{b}##=##1.5##
##\frac {2^m}{3^m}##=##1⋅5## ,
##m## =## -0.9975##
also from,
##3a-2b=0##,
##\frac {a}{b}##=##0.66666##
##\frac {2^m}{3^m}##=##0.66666##
##→m = 1##