Solve for ##m## in this equation that involves indices

  • Thread starter Thread starter chwala
  • Start date Start date
  • Tags Tags
    Indices
chwala
Gold Member
Messages
2,825
Reaction score
413
Homework Statement
Find value of ##m##, given ##\frac {8^m + 27^m}{12^m + 18^m}##= ##\frac {7}{6}##
Relevant Equations
indices and logs
Find value of ##m##, given ##\frac {8^m + 27^m}{12^m + 18^m}##= ##\frac {7}{6}##
 
Last edited:
Physics news on Phys.org
This is my working,
##\frac {2^{3m} + 3^{3m}}{(2 ⋅2 ⋅3)^m +(2⋅3⋅3)^m}##= ##\frac {7}{6}##
##\frac {2^{3m} + 3^{3m}}{(2^{2m}⋅3^m + 2^m ⋅3^{2m}}##= ##\frac {7}{6}##
now using the following properties,
##(a+b)(a-b)=a^2-b^2##
##(a^2-b^2)(a-b)##=##a^3-a^2b-ab^2+b^3##
##(a^2-b^2)(a-b)+a^2b+ab^2=a^3+b^3##

therefore, we shall have;
##\frac {(2^{2m} - 3^{2m})(2^m - 3^m)+2^{2m} 3^m +2^m3^{2m}}{(2^{2m}⋅ 3^m + 2^m⋅ 3^{2m}}##= ##\frac {7}{6}##

##\frac {(2^{2m} - 3^{2m})(2^m - 3^m)+2^m 3^m(2^m +3^m)}{(2^m⋅ 3^m (2^m+ 3^m)}##= ##\frac {7}{6}##

##\frac {(2^m + 3^m)(2^m-3^m)(2^m-3^m)+2^m3^m(2^m+3^m)}{(2^m ⋅3^m (2^m+ 3^m)}##= ##\frac {7}{6}##

##\frac {(2^m - 3^m)(2^m-3^m)+2^m3^m}{2^m. 3^m }##= ##\frac {7}{6}##
##6⋅2^{2m} + 6 ⋅3^{2m} - 6 ⋅2^m⋅3^m = 7⋅2^m⋅3^m##
##6⋅2^{2m} + 6⋅3^{2m} =13⋅2^m⋅3^m##
let ##a=2^m## and ##b=3^m## then it follows that,
##6a^2+6b^2=13ab##
##6a^2-13ab+6b^2=0##
##(2a-3b)(3a-2b)=0##
From,##2a-3b=0##,it follows that,
##\frac {a}{b}##=##1.5##
##\frac {2^m}{3^m}##=##1⋅5## ,
##m## =## -0.9975##

also from,
##3a-2b=0##,
##\frac {a}{b}##=##0.66666##
##\frac {2^m}{3^m}##=##0.66666##
##→m = 1##
 
Last edited:
It is always a good strategy to remove what disturbs. We only have factors ##2^m## and ##3^m##. What do we get if we substitute ##2^m=x## and ##3^m=y##? Can you simplify the equation in terms of ##x## and ##y##?
 
  • Like
Likes chwala
fresh_42 said:
It is always a good strategy to remove what disturbs. We only have factors ##2^m## and ##3^m##. What do we get if we substitute ##2^m=x## and ##3^m=y##? Can you simplify the equation in terms of ##x## and ##y##?
allow me to finish posting my solution...:smile:
 
yap, looking for other ways of doing this...
 
I think you made a mistake after ##(2a-3b)(3a-2b)=0.##

##(2a-3b)=0## means ##\dfrac{a}{b}=\dfrac{2^m}{3^m}=\dfrac{3}{2}##.
##(3a-2b)=0## means ##\dfrac{a}{b}=\dfrac{2^m}{3^m}=\dfrac{2}{3}##.
 
Last edited:
fresh_42 said:
I think you made a mistake after ##(2a-3b)(3a-2b)=0.##

##(2a-3b)=0## is impossible. Why?
##(3a-2b)=0## means ##\dfrac{a}{b}=\dfrac{2}{3}##.
Why not? I think the solution which is approximately ##m=-1##, satisfies the equation...we have two solutions here, ##m=-1## and ##m=1##
 
  • Like
Likes fresh_42
My solution is basically the same:

##\dfrac {8^m + 27^m}{12^m + 18^m}= \dfrac {7}{6}\; , \;a=2^m\; , \;b=3^m##
\begin{align*}
\dfrac{a^3+b^3}{a^2b+ab^2}&=\dfrac{(a+b)(a^2-ab+b^2)}{ab(a+b)}=\dfrac{a^2-ab+b^2}{ab}=\dfrac{7}{6}\\
\dfrac{a}{b}-1+\dfrac{b}{a}&=c-1+\dfrac{1}{c}=\dfrac{7}{6}\text{ with }c=\dfrac{a}{b}\\
c^2-\dfrac{13}{6}c+1&=\left(c-\dfrac{2}{3}\right)\cdot \left(c - \dfrac{3}{2}\right)=0\\
\Longrightarrow \dfrac{a}{b}&=\left(\dfrac{2}{3}\right)^m \in \left\{\dfrac{2}{3}\, , \,\dfrac{3}{2}\right\}
\end{align*}
 
  • Like
  • Love
Likes docnet and chwala
chwala said:
Why not? I think the solution which is approximately ##m=-1##, satisfies the equation...
My mistake. I corrected it. ##m=-1## is indeed a solution.
 
  • Like
Likes chwala
  • #10
fresh_42 said:
My mistake. I corrected it. ##m=-1## is indeed a solution.
bingo Fresh:cool:
 
  • Haha
  • Love
Likes docnet and fresh_42
Back
Top