Solve for x & y: Simultaneous Equations

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
Click For Summary
SUMMARY

The discussion focuses on solving the simultaneous equations involving complex numbers: $a+\dfrac{3a-b}{a^2+b^2}=3$ and $b-\left(\dfrac{a+3b}{a^2+b^2}\right)=0$. The solution employs the substitution of $z=a+ib$ and its conjugate $\bar{z}=a-ib$, leading to the quadratic equation $z^2-3z+(3-i)=0$. The solutions for $(a,b)$ are determined to be $(1,-1)$ and $(2,1)$.

PREREQUISITES
  • Understanding of complex numbers and their properties
  • Familiarity with quadratic equations and their solutions
  • Knowledge of simultaneous equations and methods for solving them
  • Basic proficiency in algebraic manipulation and substitution techniques
NEXT STEPS
  • Study the properties of complex conjugates and their applications
  • Learn about solving quadratic equations using the quadratic formula
  • Explore advanced techniques for solving simultaneous equations
  • Investigate the geometric interpretation of complex numbers in the complex plane
USEFUL FOR

Mathematics students, educators, and anyone interested in advanced algebra and complex number theory.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Solve the simultaneous equations

$a+\dfrac{3a-b}{a^2+b^2}=3$

$b-\left(\dfrac{a+3b}{a^2+b^2}\right)=0$
 
Mathematics news on Phys.org
[sp]
My Solution::
Given $\displaystyle a+\left(\frac{3a-b}{a^2+b^2}\right) = 3.....(1)$

and $\displaystyle b-\left(\frac{a+3b}{a^2+b^2}\right) = 0......(2)$

Multiply eqn...$\bf{(2)}$ by $i=\sqrt{-1}$ and Added::

$\displaystyle (a+ib)+\frac{1}{a^2+b^2}\left[3(a-ib)-(b+ia)\right] = 3$

Now Let $z=a+ib$ and $\bar{z}=a-ib$ and $z\cdot \bar{z}=(a^2+b^2)$

So equation is $\displaystyle z+\frac{1}{z\cdot \bar{z}}\left[3\bar{z}-i\bar{z}\right] = 3$

So $\displaystyle z+\frac{3-i}{z} = 3\Rightarrow z^2-3z+(3-i) = 0$

So $\displaystyle z = (1-i)\;,(2+i)\Rightarrow a+ib = (1-i)\;,(2+i)$

So $(a,b) = \left\{(1,-1)\;\;,(2,1)\right\}$[/sp]
 
jacks said:
[sp]
My Solution::
Given $\displaystyle a+\left(\frac{3a-b}{a^2+b^2}\right) = 3.....(1)$

and $\displaystyle b-\left(\frac{a+3b}{a^2+b^2}\right) = 0......(2)$

Multiply eqn...$\bf{(2)}$ by $i=\sqrt{-1}$ and Added::

$\displaystyle (a+ib)+\frac{1}{a^2+b^2}\left[3(a-ib)-(b+ia)\right] = 3$

Now Let $z=a+ib$ and $\bar{z}=a-ib$ and $z\cdot \bar{z}=(a^2+b^2)$

So equation is $\displaystyle z+\frac{1}{z\cdot \bar{z}}\left[3\bar{z}-i\bar{z}\right] = 3$

So $\displaystyle z+\frac{3-i}{z} = 3\Rightarrow z^2-3z+(3-i) = 0$

So $\displaystyle z = (1-i)\;,(2+i)\Rightarrow a+ib = (1-i)\;,(2+i)$

So $(a,b) = \left\{(1,-1)\;\;,(2,1)\right\}$[/sp]

Good job, jacks! Thanks for participating!:)
 

Similar threads

Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K