A Solve GHY Boundary Term Problem for Calculations

Zitter
Messages
3
Reaction score
0
Hi everybody ! In one of my papers I need to add Gibbons-Hawking-York boundary term in order to calculate everything properly. I found a paper (https://www.sciencedirect.com/science/article/pii/S0370269316306530 ) in which authors included this term into the action. My problem is: I tried to calculate this term as a practice work, but I didn't obtain the same result as authors of paper. There is no point in posting my result, because my formula is much bigger than compact form from paper. I checked my hand-made calculations in Mathematica and they are the same, so probably there is a problem at the beginning of my thinking. Could somebody tell where is the error ?

1) Firstly, I calculated the trace of extrinsic curvature ##K=-\frac{1}{\sqrt{-g}}\partial_{\mu} (\sqrt{-g} n^{\mu})##, where ##n_{\mu}## is the unit vector normal to the boundary. The hyper-surface boundary is given by ##r=R_0##, where ##R_0## is constant. I obtained ##n_t=0,\ n_r=\sqrt{\frac{B}{A}},\ n_{\varphi}=0## and ##n^t=0,\ n^r=\sqrt{\frac{A}{B}},n^{\varphi}=0 ##.

2) In order to add GHY term into Einstein-Hilbert action I used Stokes theorem to change "surface" integral into "volume" integral. One can rewrite ##K## as ## \bar{K}^{\mu}n_{\mu}##, where ##\bar{K}^{\mu}## is vector ##(\bar{K}^t,\bar{K}^r,\bar{K}^{\varphi})=(0,\sqrt{\frac{A}{B}}K,0)##. By using Stokes theorem expression ##d^2x \sqrt{-h} K## is replaced by ##d^3x \sqrt{-g} \bar{K}^{\mu}_{;\mu}##, where ##\bar{K}^{\mu}_{;\mu}## is divergence of ##\bar{K}^{\mu}## vector.

3) Now, inside action integral we have ##\sqrt{-g}\left(\frac{1}{2\kappa}(R-2\Lambda)+\frac{1}{\kappa}\bar{K}^{\mu}_{;\mu}\right) ## plus ##\sigma##-model part.

Is this reasoning correct ? Thank you in advance for any help. Few months ago I changed my field of study from QM to GR and I have gaps in knowledge, which of course I try to reduce as hard as possible.
 
Physics news on Phys.org
Zitter said:
1) Firstly, I calculated the trace of extrinsic curvature ##K=-\frac{1}{\sqrt{-g}}\partial_{\mu} (\sqrt{-g} n^{\mu})##, where ##n_{\mu}## is the unit vector normal to the boundary. The hyper-surface boundary is given by ##r=R_0##, where ##R_0## is constant. I obtained ##n_t=0,\ n_r=\sqrt{\frac{B}{A}},\ n_{\varphi}=0## and ##n^t=0,\ n^r=\sqrt{\frac{A}{B}},n^{\varphi}=0 ##.

Are you want to check extrinsic curvature of the formula (4) in the paper of Harms and Stern? Dis you calculate the inverse metric ##g^{\mu\nu}##? can you post it?
 
Yes. I want to calculate ##K## by using ansatz on metric given by formula (4) in the paper. The inverse metric I calculated is
$$\begin{pmatrix}
-\frac{1}{A+3r^2\Omega^2 }& 0 & \frac{2\Omega}{A+3r^2 \Omega^2} \\
0 & \frac{A}{B} & 0 \\
\frac{2 \Omega}{A+3r^2 \Omega^2} & 0 & \frac{A-r^2\Omega^2}{r^2A+3r^4 \Omega^2}
\end{pmatrix}$$
 
Zitter said:
Yes. I want to calculate ##K## by using ansatz on metric given by formula (4) in the paper. The inverse metric I calculated is
$$\begin{pmatrix}
-\frac{1}{A+3r^2\Omega^2 }& 0 & \frac{2\Omega}{A+3r^2 \Omega^2} \\
0 & \frac{A}{B} & 0 \\
\frac{2 \Omega}{A+3r^2 \Omega^2} & 0 & \frac{A-r^2\Omega^2}{r^2A+3r^4 \Omega^2}
\end{pmatrix}$$
The metic ##g_{\mu\nu}## can be written as
$$
\left[
\begin{array}{ccc}
-A+r^2\Omega^2 & 0 &0\\
0&\frac{B}{A} & r^2\Omega\\
0&r^2\Omega&r^2
\end{array} \right]
$$
Am I right?
 
The ##r^2\Omega## term should be in positions (1,3) and (3,1), but thanks to you I found error in my calculations. I forgot that it should be ##r^2\Omega## and not ##2r^2\Omega## :D. Now everything is ok and calculations are correct .
 
I asked a question here, probably over 15 years ago on entanglement and I appreciated the thoughtful answers I received back then. The intervening years haven't made me any more knowledgeable in physics, so forgive my naïveté ! If a have a piece of paper in an area of high gravity, lets say near a black hole, and I draw a triangle on this paper and 'measure' the angles of the triangle, will they add to 180 degrees? How about if I'm looking at this paper outside of the (reasonable)...
Back
Top