Solve Integration Problem: ∫x^3/(x^2+1)^(3/2) dx

  • Thread starter Thread starter tmwong
  • Start date Start date
  • Tags Tags
    Integration
tmwong
Messages
24
Reaction score
0
can anyone solve this equation?

∫x^3/(x^2+1)^(3/2) dx
 
Physics news on Phys.org
\int\frac{x^3}{\left(x^2+1\right)^{\frac{3}{2}}}dx=\frac{x^2+2}{\sqrt{x^2+1}}+C
 
Hmm, maybe integration by parts would work?
\frac{x^3}{\left(x^2+1\right)^{\frac{3}{2}}}=x^2\frac{x}{\left(x^2+1\right)^{\frac{3}{2}}}
The primitive of the factor on the right is
\frac{-1}{\sqrt{x^2+1}}
looks like it may lead somewhere.
Appears tedious though
 
Last edited:
 
NeutronStar said:
\int\frac{x^3}{\left(x^2+1\right)^{\frac{3}{2}}}dx=<br /> \frac{x^2+2}{\sqrt{x^2+1}}+C

Proof
\int\frac{x^3}{\left(x^2+1\right)^{\frac{3}{2}}}dx=<br /> \int\frac{x^2}{2}\frac{2x}{(\sqrt{x^2+1})^3}dx=<br /> -\frac{x^2}{\sqrt{x^2+1}}+\int\frac{2x}{\sqrt{x^2+1}}dx=<br /> -\frac{x^2}{\sqrt{x^2+1}}+2\sqrt{x^2+1}+C=<br /> \frac{x^2+2}{\sqrt{x^2+1}}+C
 
Back
Top