Solve IVP: 3.4.5.5 | Eigenvectors Found

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Ivp
Click For Summary
SUMMARY

The discussion focuses on solving the initial value problem (IVP) defined by the system of differential equations: x' = 2x + 2y and y' = -4x + 6y, with initial conditions x(0) = 2 and y(0) = -3. The characteristic equation derived from the system is r^2 - 8r + 20 = 0, yielding complex eigenvalues r = 4 ± 2i. The corresponding eigenvectors are [1/2 + i/2, 1] and [1/2 - i/2, 1]. The final solutions for x(t) and y(t) are x(t) = e^(4t)(-2 cos(2t) - 9 sin(2t)) and y(t) = e^(4t)(-3 cos(2t) - (11/2) sin(2t).

PREREQUISITES
  • Understanding of linear differential equations
  • Familiarity with eigenvalues and eigenvectors
  • Knowledge of the method of undetermined coefficients
  • Proficiency in solving initial value problems (IVP)
NEXT STEPS
  • Study the method of solving systems of linear differential equations
  • Learn about the application of eigenvalues in dynamic systems
  • Explore the use of the Laplace transform for solving IVPs
  • Investigate the implications of complex eigenvalues in system stability
USEFUL FOR

Mathematics students, engineers, and researchers involved in differential equations, particularly those working with systems of equations and initial value problems.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
Solve IVP
$\begin{array}{rl}x' & = 2x + 2y\\y' & = -4x + 6y\\x(0) & = 2\\y(0) & = -3
\end{array}$
assume we can proceed with this first
$A=\left[\begin{array}{rr}2&2\\-4&6\end{array}\right]\\
A-rI=\left[\begin{array}{rr}2-r&2\\-4&6-r\end{array}\right]=r^{2} -8r + 20 = 0 \quad r_1 = 4 -2 i \quad r_2=4+2i$

eigenvector: $\left[\begin{array}{c}\dfrac{1}{2} + \dfrac{i}{2}\\1\end{array}\right]$

eigenvector: $\left[\begin{array}{c}\dfrac{1}{2} - \dfrac{i}{2}\\1\end{array}\right]$

so far

 
Last edited:
Physics news on Phys.org
Once again, I would not use matrices for this simple a problem.

We have x'= 2x+ 2y so x''= 2x'+ 2y'.
We also have y'= -4x+ 6y so x''= 2x'+ 2(-4x+ 6y)= 2x'- 8x+ 12y.From x'= 2x+ 2y, 2y= x'- 2x so 12y= 6x'- 12x

We have x''= 2x'- 8x+ 6x'- 12x= 8x'- 20x
.x''- 8x'+ 20x= 0.

The characteristic equation is r^2- 8r+ 20= r^2- 8r+ 16- 16+ 20= (r- 4)^2+ 4= 0.
(r- 4)^2= -4 so $r- 4= \pm 2i$. $r= 4\pm 2i$

$x= e^{4t}(A cos(2t)+ B sin(2t))$
$12y= 6x'- 12x$ so $y= (1/2)x'- x$

$x'= 4e^{4t}(A cos(2t)+ B sin(2t))+ e^{4t}(-2A sin(2t)+ 2B cos(2t))= e^{4t}((4A+ 2B)cos(2t)+ (B- 2A)sin(2t))$

so $y= e^{4t}((2A+B)cos(2t)+ (B/2- A)sin(2t))- e^{4t}(A cos(2t)+ B sin(2t))= e^{4t}((A+ B)cos(2t)+ (3B/2- A)sin(2t))$

x(0)= A= 2 and y(0)= A+ B= 2+ B= -3 so B= -5.

$x(t)= e^{4t}(-2 cos(2t)- 9 sin(2t))$
$y(t)= e^{4t}(-3 cos(2t)-(11/2)sin(2t)$.
 
Last edited:
Country Boy said:
Once again, I would not use matrices for this simple a problem.

We have x'= 2x+ 2y so x''= 2x'+ 2y'.
We also have y'= -4x+ 6y so x''= 2x'+ 2(-4x+ 6y)= 2x'- 8x+ 12y.From x'= 2x+ 2y, 2y= x'- 2x so 12y= 6x'- 12x

We have x''= 2x'- 8x+ 6x'- 12x= 8x'- 20x
.x''- 8x'+ 20x= 0.

The characteristic equation is r^2- 8r+ 20= r^2- 8r+ 16- 16+ 20= (r- 4)^2+ 4= 0.
(r- 4)^2= -4 so $r- 4= \pm 2i$. $r= 4\pm 2i$

$x= e^{4t}(A cos(2t)+ B sin(2t))$
$12y= 6x'- 12x$ so $y= (1/2)x'- x$

$x'= 4e^{4t}(A cos(2t)+ B sin(2t))+ e^{4t}(-2A sin(2t)+ 2B cos(2t))= e^{4t}((4A+ 2B)cos(2t)+ (B- 2A)sin(2t))$

so $y= e^{4t}((2A+B)cos(2t)+ (B/2- A)sin(2t))- e^{4t}(A cos(2t)+ B sin(2t))= e^{4t}((A+ B)cos(2t)+ (3B/2- A)sin(2t))$

x(0)= A= 2 and y(0)= A+ B= 2+ B= -3 so B= -5.

$x(t)= e^{4t}(-2 cos(2t)- 9 sin(2t))$
$y(t)= e^{4t}(-3 cos(2t)-(11/2)sin(2t)$.
ok I don't think I understood every step, but let me try the the next one with this example on a new thread
it should be 3.4.5.7

that's a lot of help you are providing, I see too there are lots of views
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K