MHB Solve Probability Inequality | Finite Probabilistic Space

AI Thread Summary
To solve the probability inequality Pr[A∩B] ≥ 9*Pr[A]*Pr[B] > 0, a finite probabilistic space can be defined with Ω = {a_1, a_2, ..., a_m} and uniform probabilities p(a_i) = 1/m for i = 1, 2, ..., m. By selecting events A = {a_1, a_2} and B = {a_1, a_3}, the condition simplifies to requiring m ≥ 36. This ensures that the intersection probability meets the inequality criteria. Thus, a finite space with at least 36 elements satisfies the problem's requirements.
alfred2
Messages
8
Reaction score
0
Hi! I have to do this exercise:

Define a finite probabilistic Space (Ω; Pr[ ]) and 2 events A,B⊆ Ω and Pr[A] ≠ Pr so that we can verify that
Pr[A∩B]>=9*Pr[A]*Pr > 0. (1)
___________________________________________
I've been trying it but i have reached this conclusion:
If Pr[A]>0 Pr[A]=Pr[A∩B]/P[B|A]
IF Pr>0 Pr=Pr[A∩B]/P[A|B]
Substituting in (1) we have:
P[A|B]*P[A|B]>=9*Pr[A∩B]
I don't know if this help. Can anyone help me please? Thanks
 
Mathematics news on Phys.org
I solve the above question from an unanswered MHB thread.

Consider $\Omega=\{a_1,a_2,\ldots,a_m\}$ and the probabilty on $\mathcal{P}(\Omega)$ defined by: $$p(a_i)=\frac{1}{m}\quad \forall i=1,2,\ldots,m$$ Consider $A=\{a_1,a_2\}$ and $B=\{a_1,a_3\}$. Then, $$p(A\cap B)\ge 9p(A)p(B)\Leftrightarrow \frac{1}{m}\geq 9\cdot \frac{2}{m}\cdot\frac{2}{m}\Leftrightarrow 1\ge \frac{36}{m}\Leftrightarrow m\ge 36$$ That is, you only need to choose $\Omega$ with 36 elements.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top