MHB Solve Proving 2 Triangles Cong. w/ Diam & Eq. Triangle (2-Col Proof)

srk
Messages
1
Reaction score
0
View attachment 5015

Not sure how to solve considering nothing is given as perpendicular or bisected.
Is anyone aware on how to solve this problem?

~S.R.K.
 

Attachments

  • 11.jpg
    11.jpg
    61.5 KB · Views: 109
Mathematics news on Phys.org
Well, to start with list what is given, then look at similar components
 
I think you will see that KH is a bisector and that will all angles equal and the sides equal
 
Last edited:
If two arcs are congruent, what must be true about the angles that subtend the arcs?
 
srk said:
Not sure how to solve considering nothing is given as perpendicular or bisected.
Is anyone aware on how to solve this problem?

If all three arcs have the same length, then the triangle is equilateral.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top