Solve Recursion Equation: f(x)=-f(x-1)+g(x)

  • Thread starter Thread starter Marth361
  • Start date Start date
  • Tags Tags
    Recursion
AI Thread Summary
The discussion focuses on solving the recursion equation f(x) = -f(x-1) + g(x), with g(x) specified as x^2 and initial conditions f(0)=0 and f(1)=1. A method is outlined that involves expanding the recursion step-by-step to identify patterns, ultimately leading to a closed form for f(n). It is noted that the result will vary based on the form of g(x), and while some cases yield simple solutions, others may not. Additionally, resources like "Discrete Mathematics with Proof" and "Concrete Mathematics" are recommended for further study. The conversation emphasizes careful manipulation of terms to avoid errors in signs and subscripts.
Marth361
Messages
3
Reaction score
0
Hi I'm doing a project in math and seem to be stuck on one part.

I come to trying to solve this recursion equation given by...

f(x) = -f(x-1) + g(x) where g(x) is known.

Would anyone mind showing me how to go around solving for f(x)?
In this case i have g(x)=x^{2} and f(0)=0 and f(1)=1
but will need to solve for any g(x) later on.

Thank You!
 
Last edited:
Mathematics news on Phys.org
In the textbook "Discrete Mathematics with Proof" by Eric Gossett he describes a fairly simple manual process that can be used to solve some problems like this.

You begin by writing down your expression for f(n)
f(n) = -f(n - 1) + n^2
Then you expand the f(n-1) term using your definition
f(n) = -(-f(n - 2) + (n - 1)^2) + n^2
Then you "gently" simplify this, roughly only trying to isolate the f(n-2) and no more
f(n) = f(n - 2) - (n - 1)^2 + n^2
Now you repeat this pair of steps again, carefully.
f(n) = -(f(n - 3) + (n - 2)^2) - (n - 1)^2 + n^2
f(n) = -f(n - 3) - (n - 2)^2 - (n - 1)^2 + n^2
You repeat this enough times until you see the patterns developing in the result.
With that you make a leap letting you write the pattern reduced all the way to f(1) or f(0).
And finally you look at the pattern and try to see a simpler closed form expression.

So try to apply this description on your problem and see how much progress you can make. There are other, sometimes more powerful, methods of solving these, but this method may make some sense to you and can be used to solve some problems like yours. Be very careful to not make mistakes with subscripts and signs when you are doing this.
 
I can see where you are going with this but wouldn't I arrive at f(n) being equal to some sum.
I believe it would come out to be...

f(n)=n^{2}-\sumi^{2} from i=1 to i=n-1

If this is the case than any g(x) will involve me finding the partial sum of some series. Which is easy in this case but id rather avoid that situation for further instances of g(x)
 
I think it is good that you were able to see where to go from the hint that I provided.
The form of the result will obviously depend heavily on what g(x) is. Like integrals and differential equations, there are recurrence relations that do not have simple closed form solutions, but for many simple problems we find there is a compact solution. If you want to learn more about this then "Concrete Mathematics" by Graham and Knuth is one introduction. The author of "Generatingfunctionology" kindly put a pdf copy of his latest edition on the web. That would take more work to master, but is not beyond reach of the dedicated.
 
Last edited:
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top