Solve Significant Figures Homework

AI Thread Summary
The discussion focuses on rewriting experimental results with appropriate significant figures and uncertainties. It emphasizes that errors should be reflected in the significant digits of the results, with specific guidelines for rounding and formatting. For example, when the first digit of the error is a 1, one additional significant digit may be included. The conversation also highlights the importance of consistency in scientific notation, advising against mixing different exponents for central values and uncertainties. Overall, clarity and adherence to significant figure rules are crucial for accurately presenting experimental data.
Silviu
Messages
612
Reaction score
11

Homework Statement


I am given some results of certain experiments with errors and I need to rewrite them correctly in term of significant digits.

Homework Equations


The professor explained to us that, for example, 1.12345 ± 0.5231 is not correct (or at least not the right way) because you already have an error on the first digit after . so adding more digits make no sense, so I should rewrite this as 1.1 ± 0.5 (or in some cases 1.12 ± 0.52).

The Attempt at a Solution



4.12734 ± 1.357 --- 4.1 ± 1.44.12734 ± 0.0487 --- 4.13 ± 0.05

0.4321273 ± 0.00169 --- 0.4321 ± 0.0017

0.002163 ± 0.00032 --- 0.0022 ± 0.0003

304479 ± 791 --- 3.045e5 ± 800

728 ± 0.422 --- 728.0 ± 0.4

511.24 ± 2.721 --- 511 ± 3

383 ± 61.32 --- 383 ± 61

987.12 ± 62.57 --- 987 ± 63

6974.12734 ± 487 --- 6970 ± 490

123456789 ± 2344 --- 1.23456e8 ± 2000

0.000002723 ± 0.000000317 --- 2.7e-6 ± 3e-7

12.4 ± 7.2 --- 12.4 ± 7.2

These are the ones we have to rewrite and on the right of --- is my solution. Is it correct? I am a bit confused especially about the ones with big numbers and errors of order of 10^2. Thank you[/B]
 
Physics news on Phys.org
Hi,

In general, errors in experimental results are difficult to determine: they are estimates. Even with large numbers of observations and then averaging, statistics show that the relative accuracy of a standard deviation is about ##1/\sqrt n##. So with 10 measurements the error is only 30% accurate.
Except in special cases, more than one significant digit is not really achievable.

I learned that an exception is when the first digit of the error is a 1: then you give one more (in order not to have such a big step to the next value)

You follow the guidelines nicely, but sense some discomfort when errors are > 1.

I would present ##383\pm 61## as ##380\pm 60## without hesitation, idem ##987\pm 62 \rightarrow 990 \pm 60##.
With bigger numbers, one way around is to report e.g. ##6974 \pm 487 ## as ## (6.9\pm 0.5)\times 10^3##

Here another guideline comes in: powers of ten preferably in steps of 3 . But it's not a strict guideline at all.

(on the next line you show some fatigue: last digit rounds off to 7). A mix of scientific and normal number format is uneasy on the eye; I would prefer ##(123.457 \pm 0.02) \times 10^6 ##.
[edit] oh, 0.002 of course. Thanks mfb - and we see it's a matter of tastes differing (post below) -- not a strict guideline at all. My motivation: there's often a name for such a power, like ##M\Omega## etc.

Then the next line is also uneasy because of the different exponents. I like ##(2.7\pm0.3)\times 10^{-7}## better. Taste ? [edit] oh, sorry ##10^{-6}## - even better. ; thanks mfb)
 
Last edited:
Silviu said:
2.7e-6 ± 3e-7
Don't use different exponents for central value and uncertainty. I would write it as (2.7±0.3) e-6, writing it as 2.7e-6 ± 0.3e-6 is possible as well.
BvU said:
(on the next line you show some fatigue: last digit rounds off to 7). A mix of scientific and normal number format is uneasy on the eye; I would prefer ##(123.457 \pm 0.02) \times 10^6 ##.
Should be 0.002, not 0.02. I would not shift the decimal dot around like that just to get a multiple of 3.
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Back
Top