tehno said:
However all of the solutions with nested brackets can be reduced
to the 17 basicaly different ones given above.
Effectively, yes, there's a limited amount of +'s and -'s that you can apply to each term. So essentially, by adding parentheses, you're granting the ability to make some of the numbers positive, or leave them negative. The number 1 always has to be negative, but anything else can be switched one way or another. So, in theory, there are 2^9 (512) possibilities, and (I trust) only 17 of those are valid solutions.
But what that means is that a solution like this:
-1-(2-(3-4-5)-6-7-8-(9-10)) = 11
Would be equivalent to your solution #14:
-1-(2-3)-4-(5-6-7-8-9)-10 = 11
Now, that's sort of true, but I'd argue that those really are pretty distinct in terms of order of operations and in writing style.
DaveE
[edit]
To be a bit more clear, the 17 solutions are:
-1,+2,+3,+4,+5,-6,-7,-8,+9,+10
-1,+2,+3,+4,-5,+6,-7,+8,-9,+10
-1,+2,+3,+4,-5,-6,+7,+8,+9,-10
-1,+2,+3,-4,+5,+6,+7,-8,-9,+10
-1,+2,+3,-4,+5,+6,-7,+8,+9,-10
-1,+2,-3,+4,+5,+6,+7,-8,+9,-10
-1,+2,-3,+4,-5,-6,-7,+8,+9,+10
-1,+2,-3,-4,+5,-6,+7,-8,+9,+10
-1,+2,-3,-4,-5,+6,+7,+8,-9,+10
-1,-2,+3,+4,+5,+6,+7,+8,-9,-10
-1,-2,+3,+4,-5,-6,+7,-8,+9,+10
-1,-2,+3,-4,+5,+6,-7,-8,+9,+10
-1,-2,+3,-4,+5,-6,+7,+8,-9,+10
-1,-2,+3,-4,-5,+6,+7,+8,+9,-10
-1,-2,-3,+4,+5,+6,-7,+8,-9,+10
-1,-2,-3,+4,+5,-6,+7,+8,+9,-10
-1,-2,-3,-4,-5,+6,-7,+8,+9,+10
And there are multiple ways of writing each of these with parentheses, as demonstrated above.
[/edit]