MHB Solve the equation cos^8θ+sin^8θ−2(1−cos^2θsin^2θ)^2+1=0

  • Thread starter Thread starter lfdahl
  • Start date Start date
AI Thread Summary
The equation cos^8θ + sin^8θ - 2(1 - cos^2θ sin^2θ)^2 + 1 = 0 simplifies to a form that reveals its solutions. By substituting x = cos^2θ, the equation reduces to 2x(x-1)(x^2-x+1) = 0, yielding x = 0 and x = 1 as the only real solutions. These correspond to cosθ = 0 and cosθ = ±1, leading to solutions θ = nπ/2, where n is an integer. Further analysis shows that the original equation is actually a tautology, confirming it holds true for all θ. Thus, the equation is satisfied universally across all angles.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Find all possible $\theta$, that satisfy the equation:

$$\cos^8\theta+\sin^8\theta-2(1-\cos^2\theta\sin^2\theta)^2+1 = 0$$
 
Mathematics news on Phys.org
lfdahl said:
Find all possible $\theta$, that satisfy the equation:

$$\cos^8\theta+\sin^8\theta-2(1-\cos^2\theta\sin^2\theta)^2+1 = 0$$
[sp]
Let us write $x=\cos^2\theta$; this implies $\sin^2\theta=1-x$. The equation becomes
$$\begin{align*}
x^4 + (1-x)^4 -2(1 - x(1-x))+1&=0\\
2x^4-4x^3+4x^2-2x&=0\\
2x(x-1)(x^2-x+1)&=0
\end{align*}$$
As $x^2-x+1$ has no real root, the only solutions are $x=0$ and $x=1$ (since $x\ge0$). These correspond to $\cos\theta=0,\,\pm1$ and $\theta=\dfrac{n\pi}{2}$, $n\in\mathbb{Z}$.
[/sp]
 
[sp]
$$\cos^8\theta+\sin^8\theta-2(1-\cos^2\theta\sin^2\theta)^2+1 = 0$$
$$\cos^8\theta+\sin^8\theta-2\cos^4\theta\sin^4\theta +4\cos^2\theta\sin^2\theta - 1 = 0$$
$$(\cos^4\theta - \sin^4\theta)^2 +4\cos^2\theta\sin^2\theta - 1 = 0$$
$$\bigl((\cos^2\theta - \sin^2\theta)(\cos^2\theta + \sin^2\theta)\bigr)^2 +4\cos^2\theta\sin^2\theta - 1 = 0$$
$$(\cos^2\theta - \sin^2\theta)^2 +4\cos^2\theta\sin^2\theta - 1 = 0$$
$$(\cos^2\theta + \sin^2\theta)^2 - 1 = 0$$
$$1 - 1 = 0$$ That is a tautology, so the equation is true for all $\theta$.

[It looks as though castor28 omitted to square $(1 - x(1-x))$.]
[/sp]
 
castor28 said:
[sp]
Let us write $x=\cos^2\theta$; this implies $\sin^2\theta=1-x$. The equation becomes
$$\begin{align*}
x^4 + (1-x)^4 -2(1 - x(1-x))+1&=0\\
2x^4-4x^3+4x^2-2x&=0\\
2x(x-1)(x^2-x+1)&=0
\end{align*}$$
As $x^2-x+1$ has no real root, the only solutions are $x=0$ and $x=1$ (since $x\ge0$). These correspond to $\cos\theta=0,\,\pm1$ and $\theta=\dfrac{n\pi}{2}$, $n\in\mathbb{Z}$.
[/sp]

Thankyou, castor28, for your participation!

It seems, Opalg is right: You forgot to square the parenthesis. The correct answer is: $\theta \in \Bbb{R}$.
 
Opalg said:
[sp]
$$\cos^8\theta+\sin^8\theta-2(1-\cos^2\theta\sin^2\theta)^2+1 = 0$$
$$\cos^8\theta+\sin^8\theta-2\cos^4\theta\sin^4\theta +4\cos^2\theta\sin^2\theta - 1 = 0$$
$$(\cos^4\theta - \sin^4\theta)^2 +4\cos^2\theta\sin^2\theta - 1 = 0$$
$$\bigl((\cos^2\theta - \sin^2\theta)(\cos^2\theta + \sin^2\theta)\bigr)^2 +4\cos^2\theta\sin^2\theta - 1 = 0$$
$$(\cos^2\theta - \sin^2\theta)^2 +4\cos^2\theta\sin^2\theta - 1 = 0$$
$$(\cos^2\theta + \sin^2\theta)^2 - 1 = 0$$
$$1 - 1 = 0$$ That is a tautology, so the equation is true for all $\theta$.

[It looks as though castor28 omitted to square $(1 - x(1-x))$.]
[/sp]

Thankyou, Opalg, for a short and elegant solution!

Yes, the equation is indeed a tautology!
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Back
Top