Solve the given problem that involves Trigonometry

Click For Summary
SUMMARY

The discussion focuses on solving trigonometric equations involving the cosine and sine functions, specifically using the identities for cosine of sums and differences. Key equations include ##\cos(A-B)=\cos A\cos B+\sin A\sin B## and ##f(θ)=\cos 60^\circ - \sin(θ+30^\circ)\sin(θ-30^\circ)##. The maximum and minimum values of the function ##f(θ)## are determined to be ##\frac{3}{4}## and ##-\frac{1}{4}##, respectively, at specific angles. Participants suggest using part (a) to derive a general result for ##\cos(A+B)\cos(A-B)## to simplify the problem.

PREREQUISITES
  • Understanding of trigonometric identities, specifically cosine and sine functions.
  • Familiarity with the concepts of maximum and minimum values in trigonometric functions.
  • Ability to manipulate and solve equations involving trigonometric functions.
  • Knowledge of angle addition and subtraction formulas in trigonometry.
NEXT STEPS
  • Research the derivation of the cosine addition and subtraction formulas.
  • Learn how to apply trigonometric identities to simplify complex equations.
  • Explore methods for finding extrema of trigonometric functions.
  • Study the application of trigonometric identities in solving real-world problems.
USEFUL FOR

Students studying trigonometry, mathematics educators, and anyone looking to enhance their problem-solving skills in trigonometric equations.

chwala
Gold Member
Messages
2,828
Reaction score
420
Homework Statement
See attached.
Relevant Equations
Trigonometry
1686651718822.png


For part (a),

We know that ##\cos (-θ)=\cos (θ)## and ##\sin (-θ)=-\sin (θ)##

##\cos (A-B)=\cos A\cos (-B) -\sin A\sin(-B)##

##\cos (A-B)=\cos A\cos (B) +\sin A\sin(B)##

##\cos (A-B)=\cos A\cos B+\sin A\sin B##

For part (b)

...

##f(θ)=\cos 60^0- \sin (θ+30^0)\sin (θ-30^0)##
##f(θ)=\cos 2θ+ \sin (θ+30^0)\sin (θ-30^0)##

on addition,
...
##2f(θ)= \cos 60^0 + cos 2θ##

##2f(θ)=\dfrac{1}{2}+ (2\cos^2 θ -1)##

##f(θ)=\cos^2 θ - \dfrac{1}{4}##For part (c) i,

The maximum value of ##f(θ)## is given by,

##f(180^0)=\left[1-\dfrac{1}{4}\right]=\dfrac{3}{4}## at smallest positive value of ##θ=180^0##

The minimum value of ##f(θ)## is given by,

##f(90^0)=\left[0-\dfrac{1}{4}\right]=-\dfrac{1}{4}## at smallest positive value of ##θ=90^0##

Bingo!

Any insight/alternative approach is highly welcome. Cheers guys. :cool:
 
Last edited:
Physics news on Phys.org
What you have for part (b) is so wrong that it's difficult to make any guess as to what you were trying to do.

Clearly it can't be that both of the following statements are true:

chwala said:
For part (b)

##f(θ)=\cos 60^0- \sin (θ+30^0)\sin (θ-30^0)##
##f(θ)=\cos 60^0+ \sin (θ+30^0)\sin (θ-30^0)##

on addition,
...
Furthermore, on addition they give:

##2f(θ)=2\cos 60^\circ##
 
Last edited:
SammyS said:
What you have for part (b) is so wrong that it's difficult to make any guess as to what you were trying to do.

Clearly it can't be that both of the following statements are true:Furthermore, on addition they give:

##2f(θ)=2\cos 60^\circ##
I just amended.

...small typo boss! That should be clear to you now.
 
chwala said:
I just amended.

...small typo boss! That should be clear to you now.
That does give some small hint as to what you were trying to do. The only thing clear about this is that the result does not follow from what is given.

Suggestion:

Use part (a) to get a general result for ##\cos(A+B) \cos(A-B)##. You get a difference times a sum, which factors to a difference of squares. Use that to get ##f(\theta)## plugging in ##\theta## for ##A## and ##30^\circ## for ##B## .
 
SammyS said:
That does give some small hint as to what you were trying to do. The only thing clear about this is that the result does not follow from what is given.

Suggestion:

Use part (a) to get a general result for ##\cos(A+B) \cos(A-B)##. You get a difference times a sum, which factors to a difference of squares. Use that to get ##f(\theta)## plugging in ##\theta## for ##A## and ##30^\circ## for ##B## .
...this should be simple sir, I just made use of part (a);
Specifically, ##\cos(A+B)## and ##\cos (A-B)##...that gave me the two simultaneous equations.
 
chwala said:
...this should be simple sir, I just made use of part (a);
Specifically, ##\cos(A+B)## and ##\cos (A-B)##...that gave me the two simultaneous equations.
That may be what you intended to do, but you totally messed it up.
 
SammyS said:
That may be what you intended to do, but you totally messed it up.
fine, i hope you're having a great day...let me just repeat what i did.Let

##(θ+30^0)=A##

and

let ##(θ-30^0)=B##

Then,

##\cos(A+B)=f(θ)-\sin A\sin B##
##\cos (A-B)=f(θ)+\sin A\sin B##

##\cos 2θ=f(θ)-\sin A\sin B##
##\cos 60^0=f(θ)+\sin A\sin B##

...

cheers boss!
 
Last edited:
chwala said:
fine, i hope you're having a great day...let me just repeat what i did.Let

##(θ+30^0)=A##

and

let ##(θ-30^0)=B##

Then,

##\cos(A+B)=f(θ)-\sin A\sin B##
##\cos (A-B)=f(θ)+\sin A\sin B##

##\cos 2θ=f(θ)-\sin A\sin B##
##\cos 60^0=f(θ)+\sin A\sin B##

...

cheers boss!
OK. That does appear to work. In my opinion, unless you give that sort of explanation, it's next to impossible to see that your solution is correct.

I think that the more straight forward way to get the result would be to let ##A=\theta## and ##B=30^\circ##, then proceed:

##\displaystyle \cos(A+B) \cos(A-B)=\left\{ \cos A \cos B - \sin A \sin B \right \} \left\{ \cos A \cos B + \sin A \sin B \right \}##

##\displaystyle = \cos^2 A \cos^2 B - \sin^2 A \sin^2 B ##

##\displaystyle = \cos^2 \theta \cos^2 30^\circ - \sin^2 \theta \sin^2 30^\circ ##

etc.
 
  • Like
Likes   Reactions: chwala

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
5
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
Replies
10
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 8 ·
Replies
8
Views
4K