Solve the vertical stretch/compression graph problem

  • Thread starter Thread starter chwala
  • Start date Start date
  • Tags Tags
    Graph Vertical
Click For Summary
The discussion centers on the vertical stretch of the function y=f(x)=(x-2)^2 with a scale factor of a=3, resulting in the graph of y=af(x). The value of f(1) is confirmed to be 1, leading to af(1)=3, which is correctly calculated as 3. Participants clarify the relationship between the scale factor and the graph, with some confusion about notation. One user acknowledges a formatting issue on their device affecting their ability to display mathematical symbols correctly. The consensus is that the correct graph representation is the second one shown.
chwala
Gold Member
Messages
2,827
Reaction score
415
Homework Statement
see attached
Relevant Equations
Vertical stretch/compression knowledge
This is the problem,
1639134022851.png

Let ##y=f(x)= (x-2)^2##. The graph of ##y=af(x)##can be obtained from the graph of ##y=f(x)## by a stretch parallel to the y- axis with scale factor ##a##. In our case here, ##a=3##, therefore the corresponding graph is as indicated in blue. Find my graph below using desmos.

1639134323863.png
 
Last edited:
Physics news on Phys.org
You can check what the value of ##f(1)## is.
 
  • Like
Likes chwala
##f(1) =1##, therefore ##af(1)=3f(1)= 3⋅1 =3##
From## f(x)## to ##af(x)##, the scale factor is ##k=3##
 
Last edited:
chwala said:
##f(1) =1##, therefore ##af(1)=3f(1)= 3.1 =3##
So indeed, the correct graph is the second one.

chwala said:
From## f(x)## to ##af(x)##, the scale factor is ##k=3##
That's correct, but I don't see how this is related to the question of finding the correct graph.
 
True, not related mate...cheers
DrClaude said:
So indeed, the correct graph is the second one.That's correct, but I don't see how this is related to the question of finding the correct graph.
 
chwala said:
##f(1) =1##, therefore ##af(1)=3f(1)= 3.1 =3##
From## f(x)## to ##af(x)##, the scale factor is ##k=3##
You may want to write ##3 \!\cdot \!\!1## as
##3 \cdot 1 ##
rather than as
##3.1## .
 
SammyS said:
You may want to write ##3 \!\cdot \!\!1## as
##3 \cdot 1 ##
rather than as
##3.1## .
Yes Sammy...actually I didn't forget, it is only that my android phone wasn't opening the tabs related to signs...i will for sure have that fixed.
 
  • Like
Likes SammyS