Somefantastik
- 226
- 0
the book gives
u_{xx} - u_{tt} - au_{t} - bu = 0; 0<x<L, t>0
says if you multiply it by
2u_{t}
you can get
\left( 2u_{t}u_{x}\right)_{x} - \left( u^{2}_{x} + u^{2}_{t} + bu^{2}\right)_{t} -2au^{2}_{t} = 0
or
\frac{\partial}{\partial x} \left( 2 \frac{\partial u}{\partial t}\frac{\partial u}{\partial x} \right) - \frac{\partial}{\partial t} \left[ \left( \frac{\partial u}{\partial x} \right) ^{2} + \left( \frac{\partial u}{\partial t} \right) ^{2} + bu^{2} \right] - 2a\left(\frac{\partial u}{\partial t} \right)^{2} =0;
So far I have:
2 \frac{\partial u}{\partial t} \left( \frac{\partial^{2} u}{\partial x^{2}} - \frac{\partial^{2}u}{\partial t^{2}} - a\frac{\partial u}{\partial t} - b\frac{\partial u}{\partial t} \right) = 0;
2\frac{\partial u}{\partial t} \ \frac{\partial^{2}u}{\partial x^{2}} \ - \ 2 \frac{\partial u}{\partial t} \ \frac{\partial^{2}u}{\partial t^{2}} \ - \ 2a\left( \frac{\partial u}{\partial t} \right)^{2} - 2b\left(\frac{\partial u}{\partial t} \right)^2 = 0;
I can pull a d/dx out of the first term, to get \frac{\partial}{\partial x}\left(2\frac{\partial u}{\partial t} \ \frac{\partial u }{\partial x}\right), and the - \ 2a\left( \frac{\partial u}{\partial t} \right)^{2} is already there. How can I get the rest of it?
u_{xx} - u_{tt} - au_{t} - bu = 0; 0<x<L, t>0
says if you multiply it by
2u_{t}
you can get
\left( 2u_{t}u_{x}\right)_{x} - \left( u^{2}_{x} + u^{2}_{t} + bu^{2}\right)_{t} -2au^{2}_{t} = 0
or
\frac{\partial}{\partial x} \left( 2 \frac{\partial u}{\partial t}\frac{\partial u}{\partial x} \right) - \frac{\partial}{\partial t} \left[ \left( \frac{\partial u}{\partial x} \right) ^{2} + \left( \frac{\partial u}{\partial t} \right) ^{2} + bu^{2} \right] - 2a\left(\frac{\partial u}{\partial t} \right)^{2} =0;
So far I have:
2 \frac{\partial u}{\partial t} \left( \frac{\partial^{2} u}{\partial x^{2}} - \frac{\partial^{2}u}{\partial t^{2}} - a\frac{\partial u}{\partial t} - b\frac{\partial u}{\partial t} \right) = 0;
2\frac{\partial u}{\partial t} \ \frac{\partial^{2}u}{\partial x^{2}} \ - \ 2 \frac{\partial u}{\partial t} \ \frac{\partial^{2}u}{\partial t^{2}} \ - \ 2a\left( \frac{\partial u}{\partial t} \right)^{2} - 2b\left(\frac{\partial u}{\partial t} \right)^2 = 0;
I can pull a d/dx out of the first term, to get \frac{\partial}{\partial x}\left(2\frac{\partial u}{\partial t} \ \frac{\partial u }{\partial x}\right), and the - \ 2a\left( \frac{\partial u}{\partial t} \right)^{2} is already there. How can I get the rest of it?