MHB Solving 3 Equations for x, y & z in R

  • Thread starter Thread starter Albert1
  • Start date Start date
AI Thread Summary
The discussion focuses on solving three equations involving variables x, y, and z in relation to a non-zero constant a. The equations provided are xyz = a/2, x^2 + y^2 + z^2 = a^2 + 6, and x + y + z = a. Participants analyze the expression 1/(xy + az) + 1/(yz + ax) + 1/(zx + ay) and clarify the denominator's formulation, correcting a typographical error. The conversation concludes with an acknowledgment of a well-presented solution.
Albert1
Messages
1,221
Reaction score
0
$a,x,y,z\in R,\,\, a\neq 0$
given:
$xyz=\dfrac {a}{2}---(1)$
$x^2+y^2+z^2=a^2+6---(2)$
$x+y+z=a---(3)$
find:$\dfrac{1}{xy+az}+\dfrac{1}{yz+ax}+\dfrac{1}{zx+ay}=?$
 
Mathematics news on Phys.org
Albert said:
$a,x,y,z\in R,\,\, a\neq 0$
given:
$xyz=\dfrac {a}{2}---(1)$
$x^2+y^2+z^2=a^2+6---(2)$
$x+y+z=a---(3)$
find:$\dfrac{1}{xy+az}+\dfrac{1}{yz+ax}+\dfrac{1}{zx+ay}=?$

we have
xy + az = xy + z (x + y + z) = (z+x)(z+y) = (a-y)(a-x)
similarly
yz + ax = (a-y)(a-z)
zx + ay = (a-z)(a-x)

so 1/(xy + az) + 1/(yz + ax )+ 1/(zx + ay)}
= 1/ (a-y)(a-z)+ 1/ (a-y)(a-x) + 1/ (a-z)(a-x)
= (3a – x – y – z)/)(a-y)(a-z)(a-x))

Numerator = 3a – a ( from (3)) = 2a
Denominator = $a^3- (x+y+z)a + (xy + yz + zx) a – xyz$
= $a^3- a. a^2 + (xy + yz + zx) a – xyz$
= (xy + yz + zx) a – xyz
We have $2(xy + yz+ zx) = (x+y+z)^2 – (x^2 + y^2 + z^2) = a^2 – (a^2 + 6) = - 6$
Or xy + yz + zx = - 3
So denominator = -3a – a/2 = - 7a/2
So value = - 4/7
 
Last edited:
Denominator =a^3- (x+y+z)a + (xy + yz + zx) a – xyz
= a^3- a. a^2 + (xy + yz + zx) a – xyz
= (xy + yz + zx) a – xyz
a typo(in red)
it should be :
Denominator =a^3- (x+y+z)a^2 + (xy + yz + zx) a – xyz
=a^3- a. a^2 + (xy + yz + zx) a – xyz
= (xy + yz + zx) a – xyz

in deed ,a very nice solution :)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top