Solving a Functional Equation Problem: Finding f(3)-f(0)

  • Context: MHB 
  • Thread starter Thread starter Saitama
  • Start date Start date
  • Tags Tags
    Functional
Click For Summary
SUMMARY

The discussion revolves around solving the functional equation defined by the relation $$f(x)-2f\left(\frac{x}{2}\right)+f \left( \frac{x}{4} \right)=x^2$$ to find the value of $f(3)-f(0)$. Participants deduced that $f(0)=0$ is not necessarily valid, and through iterative substitution, they derived a series representation for $f(x)$. The final expression converges to $$f(x) = \sum_{k=0}^\infty \frac{(k+1)x^2}{4^k} + f(0)$$, allowing for the calculation of $f(3)-f(0)$ once the series is summed.

PREREQUISITES
  • Understanding of functional equations
  • Knowledge of series convergence
  • Familiarity with continuity in real functions
  • Basic algebraic manipulation skills
NEXT STEPS
  • Study the properties of continuous functions in functional equations
  • Learn about series summation techniques, particularly geometric series
  • Explore the concept of functional iteration and its applications
  • Investigate the implications of continuity on the behavior of functions at limits
USEFUL FOR

Mathematicians, students studying functional equations, and anyone interested in advanced algebraic concepts will benefit from this discussion.

Saitama
Messages
4,244
Reaction score
93
Problem:
Let $f:R\rightarrow R$ be a continuous function such that
$$f(x)-2f\left(\frac{x}{2}\right)+f \left( \frac{x}{4} \right)=x^2$$
Find $f(3)-f(0)$.

Attempt:
I really don't know how should I approach this problem. I could only deduce that $f(0)=0$. Then I tried putting a few values for $x$ i.e $x=1,2,3$ but that doesn't seem to help. I honestly don't know what should I do to find the value of $f(3)$.

Any help is appreciated. Thanks!

(I am not sure if this should belong to the Algebra section)
 
Last edited:
Physics news on Phys.org
Pranav said:
Problem:
Let $f:R\rightarrow R$ be a continuous function such that
$$f(x)-2f\left(\frac{x}{2}\right)+f \left( \frac{x}{4} \right)=x^2$$
Find $f(3)-f(0)$.

Attempt:
I really don't know how should I approach this problem. I could only deduce that $f(0)=0$. Then I tried putting a few values for $x$ i.e $x=1,2,3$ but that doesn't seem to help. I honestly don't know what should I do to find the value of $f(3)$.
To start with, I do not see why $f(0)$ should be $0$. If you put $x=0$ in the above equation then you just get $0=0$.

Next, suppose that you repeatedly apply the definition to fractions of $x$, like this: $$\begin{aligned} f(x) &= x^2 + 2f\bigl(\tfrac x2\bigr) - f\bigl(\tfrac x4\bigr) \\ &= x^2 + 2\Bigl(\bigl(\tfrac x2\bigr)^2 + 2f\bigl(\tfrac x4\bigr) - f\bigl(\tfrac x8\bigr)\Bigr) - f\bigl(\tfrac x4\bigr) \\ &= x^2 + \tfrac{2x^2}4 + 3f\bigl(\tfrac x4\bigr) - 2f\bigl(\tfrac x8\bigr) \\ &= x^2 + \tfrac{2x^2}4 + 3\Bigl(\bigl(\tfrac x4\bigr)^2 + 2f\bigl(\tfrac x8\bigr) - f\bigl(\tfrac x{16}\bigr)\Bigr) - f\bigl(\tfrac x8\bigr) \\ &= \ldots .\end{aligned}$$ Continuing in that way, you should find a series for $f(x)$ that converges to a limit, giving a expression for $f(x) - f(0).$
 
Hi Opalg! :)

Opalg said:
To start with, I do not see why $f(0)$ should be $0$. If you put $x=0$ in the above equation then you just get $0=0$.

Sorry about that. :o

Next, suppose that you repeatedly apply the definition to fractions of $x$, like this: $$\begin{aligned} f(x) &= x^2 + 2f\bigl(\tfrac x2\bigr) - f\bigl(\tfrac x4\bigr) \\ &= x^2 + 2\Bigl(\bigl(\tfrac x2\bigr)^2 + 2f\bigl(\tfrac x4\bigr) - f\bigl(\tfrac x8\bigr)\Bigr) - f\bigl(\tfrac x4\bigr) \\ &= x^2 + \tfrac{2x^2}4 + 3f\bigl(\tfrac x4\bigr) - 2f\bigl(\tfrac x8\bigr) \\ &= x^2 + \tfrac{2x^2}4 + 3\Bigl(\bigl(\tfrac x4\bigr)^2 + 2f\bigl(\tfrac x8\bigr) - f\bigl(\tfrac x{16}\bigr)\Bigr) - f\bigl(\tfrac x8\bigr) \\ &= \ldots .\end{aligned}$$ Continuing in that way, you should find a series for $f(x)$ that converges to a limit, giving a expression for $f(x) - f(0).$

I don't get this. If I continue from where you left,
$$f(x)=\frac{3x^2}{2}+\frac{3x^2}{4^2}+5f\left( \frac{x}{8}\right)-3\left(\frac{x}{16}\right)$$
$$=\frac{3x^2}{2}+\frac{3x^2}{4^2}+5\left(\frac{x^2}{4^3}+2f\left(\frac{x}{16}\right)-f\left(\frac{x}{32}\right)\right)-3f\left(\frac{x}{16}\right)$$
$$=\frac{3x^2}{2}+\frac{3x^2}{4^2}+\frac{5x^2}{4^3}+7\left(\frac{x}{16}\right)-5f\left(\frac{x}{32}\right)$$
I don't see what I have to do with the above, I can keep on expanding the above and I will end up with a series plus (something)*f(x/something'). :confused:
 
Pranav said:
Opalg said:
To start with, I do not see why $f(0)$ should be $0$. If you put $x=0$ in the above equation then you just get $0=0$.

Next, suppose that you repeatedly apply the definition to fractions of $x$, like this: $$\begin{aligned} f(x) &= x^2 + 2f\bigl(\tfrac x2\bigr) - f\bigl(\tfrac x4\bigr) \\ &= x^2 + 2\Bigl(\bigl(\tfrac x2\bigr)^2 + 2f\bigl(\tfrac x4\bigr) - f\bigl(\tfrac x8\bigr)\Bigr) - f\bigl(\tfrac x4\bigr) \\ &= x^2 + \tfrac{2x^2}4 + 3f\bigl(\tfrac x4\bigr) - 2f\bigl(\tfrac x8\bigr) \\ &= x^2 + \tfrac{2x^2}4 + 3\Bigl(\bigl(\tfrac x4\bigr)^2 + 2f\bigl(\tfrac x8\bigr) - f\bigl(\tfrac x{16}\bigr)\Bigr) - \color{red}{2}f\bigl(\tfrac x8\bigr)\quad \color{red}{\text{I left out a 2 from the previous line!}} \\ &= \ldots .\end{aligned}$$ Continuing in that way, you should find a series for $f(x)$ that converges to a limit, giving a expression for $f(x) - f(0).$
I don't get this. If I continue from where you left,
$$f(x)=\frac{3x^2}{2}+\frac{3x^2}{4^2}+5f\left( \frac{x}{8}\right)-3\left(\frac{x}{16}\right)$$
$$=\frac{3x^2}{2}+\frac{3x^2}{4^2}+5\left(\frac{x^2}{4^3}+2f\left(\frac{x}{16}\right)-f\left(\frac{x}{32}\right)\right)-3f\left(\frac{x}{16}\right)$$
$$=\frac{3x^2}{2}+\frac{3x^2}{4^2}+\frac{5x^2}{4^3}+7\left(\frac{x}{16}\right)-5f\left(\frac{x}{32}\right)$$
I don't see what I have to do with the above, I can keep on expanding the above and I will end up with a series plus (something)*f(x/something'). :confused:
Putting in the $2$ that I left out, you should end up with a series looking like $$\sum_{k=0}^n \frac{(k+1)x^2}{4^k} + (n+2)\,f\bigl(\tfrac x{2^{n+1}}\Bigr) - (n+1)\,f\bigl(\tfrac x{2^{n+2}}\Bigr).$$ As $n\to\infty$, the continuity of $f$ at $x=0$ tells you that $$f(x) = \sum_{k=0}^\infty \frac{(k+1)x^2}{4^k} + f(0).$$ Then you just have to sum that series.
 
Opalg said:
Putting in the $2$ that I left out, you should end up with a series looking like $$\sum_{k=0}^n \frac{(k+1)x^2}{4^k} + (n+2)\,f\bigl(\tfrac x{2^{n+1}}\Bigr) - (n+1)\,f\bigl(\tfrac x{2^{n+2}}\Bigr).$$ As $n\to\infty$, the continuity of $f$ at $x=0$ tells you that $$f(x) = \sum_{k=0}^\infty \frac{(k+1)x^2}{4^k} + f(0).$$ Then you just have to sum that series.

That is great! Thanks a lot Opalg! :)

I am sorry for being careless. :o

(I really miss the thanks button.)
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 38 ·
2
Replies
38
Views
5K
Replies
21
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 21 ·
Replies
21
Views
3K
Replies
11
Views
2K