MHB Can Isosceles Triangles Solve This Geometry Problem?

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Geometry
AI Thread Summary
The discussion centers on the challenge of solving a geometry problem involving isosceles triangles and the positioning of point P on an Apollonius circle. One participant struggled to find the necessary ratios and concluded that additional information, such as the length of the square's sides, is required for a solution. Another contributor clarified that while the exact position of point P cannot be determined without more data, the lengths PB and PD can be uniquely identified. The conversation highlights the complexity of the problem and the collaborative effort to reach a resolution. Ultimately, the problem was successfully solved, demonstrating the value of persistence in tackling geometric challenges.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
View attachment 5803
I tried about an hour to solve this but couldn't get the ratios to work I assume there are isoseles triangles in this but that is just observation
 

Attachments

  • image.jpg
    image.jpg
    26.9 KB · Views: 117
Mathematics news on Phys.org
I do not believe that there is enough information here to provide a solution. You need an additional fact, such as for example the length of the sides of the square.

The point $P$ must lie on an Apollonius circle with its centre on the line $BD$. (That is the set of all points for which the distances $PD$ and $PB$ are in the ratio 5 to 6.)

The area of the triangle $APC$ is half the diagonal $AC$ times the distance of $P$ from $AC$. But unless you know the length of that diagonal you cannot fix the position of $P$ or the lengths $PB$ and $PD$.

Edit. ILS's neat solution below shows that I was wrong. I was trying to determine the position of the point $P$, and it's true that this cannot be determined without further information. But the lengths $PB$ and $PD$ are uniquely determined, which I find quite surprising.
 
Last edited:
Sorry Opalg, I'm afraid I have to disagree. (Wink)

Let's say the square has side $s$.
Let's pick $A$ at the origin $O$.
And lets' pick $P=(p,q)$.
Then $A=(0,0), B=(s,0), C=(s,s), D=(0,s)$.

The triangle $ACP$ has area:
$$\frac 12 \| \vec{AP} \times \vec{AC} \| = \frac 12 \| \vec{OP} \times \vec{OC} \| = \frac 12 |ps-qs| = 19 \tag 1$$
The other equations yield:
$$PD=15x \quad\Rightarrow\quad p^2 + (s-q)^2 = (15x)^2 \quad\Rightarrow\quad p^2+q^2+s^2 - 2qs = 225x^2 \tag 2$$
$$PB=18x \quad\Rightarrow\quad (s-p)^2 + q^2 = (18x)^2 \quad\Rightarrow\quad p^2+q^2+s^2 - 2ps = 324x^2 \tag 3$$

Subtract $(2)$ from $(3)$:
$$-2ps + 2qs = 99x^2$$

Combine with $(1)$:
$$4 \cdot 19 = 99x^2 \quad\Rightarrow\quad x = \sqrt{\frac{4\cdot 19}{99}} = \frac 23\sqrt{\frac{19}{11}}$$
 
wow thank you

I spent another 2 hours on this but couldn't make those conections

I found this on G+ but everyone was giving up. but here it got solved.😎
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Back
Top