Lenore
- 3
- 0
As part of a separable solution to a PDE, I get the following ODE:
X''-rX=0 (*),
with -infty<x<infty and the boundary condition X(+/-infty)=0 (X is an odd function here). Thus I have assumed r>0 to avoid the periodic solution, cos. I, therefore, argue that the solution is the symmetric ~exp(-sqrt(r)|x|). This, however, has a discontinuity at x=0 which, seems to me, contrasts with (*) which implies X' and X'' must be continuous across x=0.
Any ideas? (Many thanks.)
X''-rX=0 (*),
with -infty<x<infty and the boundary condition X(+/-infty)=0 (X is an odd function here). Thus I have assumed r>0 to avoid the periodic solution, cos. I, therefore, argue that the solution is the symmetric ~exp(-sqrt(r)|x|). This, however, has a discontinuity at x=0 which, seems to me, contrasts with (*) which implies X' and X'' must be continuous across x=0.
Any ideas? (Many thanks.)
Last edited: