Solving Discrete Distribution: P(X = 0 & 1)

Somefantastik
Messages
226
Reaction score
0
I need help getting started on this.

Want to generate a random variable X, equally likely 0, 1, using biased coin (heads probability p).

1. Flip coin, result is labled 0_{1}
2. Flip coin, result is labeled 0_{2}
3. 0_{1} = 0_{2}=> return to step 1
4. 0_{2}= heads => X = 0, 0_{2} = tails => X = 1

Show X is equally likely to be 0 or 1.

A good place to start would be showing P{X = 0} = P{X = 1}. Can you show me how to find those two probabilities?
 
Last edited:
Physics news on Phys.org
In order to get past step 3, you have to have had one head and one tail on the two flips. Since the probs of HT and TH are equal, step 4 will give you 2 equiprobable results.
 
Keeping in mind that this is a biased coin, can someone please show me how to explicitly find P{X = 0}? I understand that it is equal to 1/2 but I need to see how to get there.
 
Prob(HT)=Prob(TH)=p(1-p). Prob(get to step 4) is 2p(1-p), therefore prob(X=0)=prob(X=1)=p(1-p)/(2p(1-p))=1/2.
 
Is there a simpler way to do this where you continuously flip a coin until the last 2 results are different, that sets X = 0 if the final flip is a head, X = 1 if final flip is a tail?
 
Somefantastik said:
Is there a simpler way to do this where you continuously flip a coin until the last 2 results are different, that sets X = 0 if the final flip is a head, X = 1 if final flip is a tail?
No. A sequence of heads followed by one tail has a different probability than a sequence of tails followed by one head. You always need to start fresh as described in your original statement.
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Back
Top