Solving for Complex $x$ in $(x-x^2)(1-x+x^2)^2=\dfrac{1}{7}$

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Complex
Click For Summary

Discussion Overview

The discussion revolves around finding all complex numbers \( x \) that satisfy the equation \( (x-x^2)(1-x+x^2)^2=\dfrac{1}{7} \). Participants explore various methods of solving this equation, including transformations and substitutions, and present different approaches to derive solutions.

Discussion Character

  • Exploratory
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant introduces a substitution \( z = x - x^2 \) and derives a cubic equation \( 7z^3 - 14z^2 + 7z - 1 = 0 \).
  • Another participant presents a method involving further substitutions to simplify the cubic equation into a sixth-degree equation in \( v^3 \).
  • Participants discuss the modulus and argument of the derived values, noting the conditions under which the square root remains real.
  • One participant calculates specific numerical values for the imaginary parts of the solutions and compares them to values obtained by another method, noting similarities.
  • Discrepancies arise regarding the real parts of the solutions, with one participant obtaining \( +\frac{1}{2} \) while another finds \( -\frac{1}{2} \). They discuss the implications of a potential typo in the other solution's derivation.

Areas of Agreement / Disagreement

Participants express differing views on the real parts of the solutions, with no consensus reached on which is correct. There is agreement on the numerical values of the imaginary parts, but the discussion remains unresolved regarding the real parts.

Contextual Notes

Participants note potential typos and errors in the derivations, which contribute to the disagreement over the real parts of the solutions. The discussion highlights the complexity of the problem and the various approaches taken to solve it.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find all complex numbers $x$ for which $(x-x^2)(1-x+x^2)^2=\dfrac{1}{7}$.
 
Physics news on Phys.org
anemone said:
Find all complex numbers $x$ for which $(x-x^2)(1-x+x^2)^2=\dfrac{1}{7}$.
[sp]
Let $z = x - x^2$. Then $z(1-z)^2 = \frac17$, from which $7z^3 - 14z^2 + 7z - 1 = 0.$

Solving that cubic equation by Vieta's method, the first step is to make the substitution $z = w + \frac23$. The equation becomes $7\bigl(w + \frac23\bigr)^3 - 14\bigl(w + \frac23\bigr)^2 + 7\bigl(w + \frac23\bigr) - 1 = 0,$ which simplifies to $w^3 - \dfrac13w - \dfrac{13}{7\cdot3^3} = 0.$

The next step is to make another substitution $w = v + \dfrac9v$, which (again after some simplification) gives $v^6 - \dfrac{13}{7\cdot3^3}v^3 + \dfrac1{3^6} = 0,$ a quadratic equation in $v^3$ with solutions $v^3 = \dfrac{13 \pm 3\sqrt3i}{14\cdot27}.$

The modulus of $v^3$ is given by $|v|^6 = \dfrac{13^2 + 3^3}{14^2\cdot27^2} = \dfrac{196}{196\cdot 3^6} = \dfrac1{3^6}.$ Therefore $|v^3| = \dfrac1{3^3}$ and $|v| = \dfrac13.$

The argument of $v^3$ is given by $\arg(v^3) = \arctan\Bigl(\dfrac{3\sqrt3}{13}\Bigr)$, so that $\arg (v) = \theta$, where $\theta$ takes three possible values $$\theta = \frac13\Bigl(\arctan\Bigl(\dfrac{3\sqrt3}{13}\Bigr) + 2k\pi\Bigr) \qquad (k = 0,1,2).$$

Thus $v = \frac13e^{i\theta}$, from which $w = v + \frac9v = \frac13e^{i\theta} + \frac13e^{-i\theta} = \frac23\cos\theta.$

Then $z = w + \frac23 = \frac23(1 + \cos\theta)$. Finally, $x$ is given by $x - x^2 = z = \frac23(1 + \cos\theta)$, so that $x^2 - x + \frac23(1 + \cos\theta) = 0.$ The solutions of that quadratic equation are $$x = \frac{3 \pm i\sqrt{15 + 24\cos\theta}}6. \qquad (*)$$

With the three values for $\theta$ given above, that gives the six complex solutions of the original equation. Notice that they all have the same real part $\frac12.$ For the imaginary part, the numerical value of $\arctan\Bigl(\dfrac{3\sqrt3}{13}\Bigr)$ is approximately $21.787^\circ$, from which you can calculate the three values for $\cos\theta$ as $0.992$, $-0.605$ and $-0.387$. In each case, $15 + 24\cos\theta >0$ so that the square root in $(*)$ is always real.
[/sp]
 
Thanks, Opalg for participating in this challenge! :D

Solution of other:

From the identity $(x+y)^7=x^7+y^7+7xy(x^2+xy+y^2)^2$

We deduce $(1-z)^7=1-z^7-7z(1-z)(1-z+z^2)^2$

Hence, our equation is equivalent to $(1-z)^7=-z^7$, that is, $\left(-\dfrac{1}{z}+1\right)^7=1$

It follows that $-\dfrac{1}{z}+1=\cos \dfrac{2k\pi}{7}+i\sin \dfrac{2k\pi}{7}$ for $k=0,\,1,\,\cdots,\,6$.

This reduces to

$\dfrac{1}{z_k}=1-\cos \dfrac{2k\pi}{7}+i\sin \dfrac{2k\pi}{7}=2\sin^2 \dfrac{2k\pi}{7}-2i\sin \dfrac{2k\pi}{7}\cos \dfrac{2k\pi}{7}$

Therefore,

$z_k=\dfrac{1}{-2isin \dfrac{2k\pi}{7}\left(\cos \dfrac{2k\pi}{7}-\sin \dfrac{2k\pi}{7} \right)}=\dfrac{\cos \dfrac{2k\pi}{7}+i\sin \dfrac{2k\pi}{7}}{-2i\sin \dfrac{2k\pi}{7}}=\dfrac{1}{2}\left(-1+i\cot \dfrac{k\pi}{7}\right)$

for $k=0,\,1,\,\cdots,\,6$.
 
anemone said:
Solution of other:

From the identity $(x+y)^7=x^7+y^7+7xy(x^2+xy+y^2)^2$

We deduce $(1-z)^7=1-z^7-7z(1-z)(1-z+z^2)^2$

Hence, our equation is equivalent to $(1-z)^7=-z^7$, that is, $\left(-\dfrac{1}{z}+1\right)^7=1$

It follows that $-\dfrac{1}{z}+1=\cos \dfrac{2k\pi}{7}+i\sin \dfrac{2k\pi}{7}$ for $k=0,\,1,\,\cdots,\,6$.

This reduces to

$\dfrac{1}{z_k}=1-\cos \dfrac{2k\pi}{7}+i\sin \dfrac{2k\pi}{7}=2\sin^2 \dfrac{2k\pi}{7}-2i\sin \dfrac{2k\pi}{7}\cos \dfrac{2k\pi}{7}$

Therefore,

$z_k=\dfrac{1}{-2isin \dfrac{2k\pi}{7}\left(\cos \dfrac{2k\pi}{7}-\sin \dfrac{2k\pi}{7} \right)}=\dfrac{\cos \dfrac{2k\pi}{7}+i\sin \dfrac{2k\pi}{7}}{-2i\sin \dfrac{2k\pi}{7}}=\dfrac{1}{2}\left(-1+i\cot \dfrac{k\pi}{7}\right)$

for $k=0,\,1,\,\cdots,\,6$.
Very neat solution!
[sp]Comparing my solution with that of "other", the numerical values that I found for the imaginary parts of the six answers work out as $\pm1.0382607$, $\pm0.3987266$ and $\pm0.1141217$. These are the same (to 7 decimal places) as the values $\frac12\cot\frac{k\pi}7 \ (k=1,2,\ldots,6)$ obtained by "other". But of course the solution giving the exact formula for those values is much superior to a mere numerical approximation.

When it comes to the real parts of the answers, I obtained $+\frac12$ in each case, whereas "other" has $-\frac12$. Checking through the solution of "other", I agree with it (apart from the odd typo) up to the line $-\frac{1}{z}+1=\cos \frac{2k\pi}{7}+i\sin \frac{2k\pi}{7}$. After that it should read $$\frac{1}{z_k}=1-\cos \frac{2k\pi}{7} - i\sin \frac{2k\pi}{7}=2\sin^2 \frac{k\pi}{7} - 2i\sin \frac{k\pi}{7}\cos \frac{k\pi}{7}.$$ Therefore $$z_k=\frac{1}{2\sin \frac{k\pi}{7}\left(\sin \frac{k\pi}{7}- i\cos \frac{k\pi}{7} \right)}=\frac{\sin \frac{k\pi}{7} + i\cos \frac{k\pi}{7}}{2\sin \frac{k\pi}{7}}=\frac{1}{2}\left(1+i\cot \dfrac{k\pi}{7}\right),$$ so that the real part is in fact $+\frac12.$
[/sp]
 
Opalg said:
Very neat solution!
[sp]Comparing my solution with that of "other", the numerical values that I found for the imaginary parts of the six answers work out as $\pm1.0382607$, $\pm0.3987266$ and $\pm0.1141217$. These are the same (to 7 decimal places) as the values $\frac12\cot\frac{k\pi}7 \ (k=1,2,\ldots,6)$ obtained by "other". But of course the solution giving the exact formula for those values is much superior to a mere numerical approximation.

When it comes to the real parts of the answers, I obtained $+\frac12$ in each case, whereas "other" has $-\frac12$. Checking through the solution of "other", I agree with it (apart from the odd typo) up to the line $-\frac{1}{z}+1=\cos \frac{2k\pi}{7}+i\sin \frac{2k\pi}{7}$. After that it should read $$\frac{1}{z_k}=1-\cos \frac{2k\pi}{7} - i\sin \frac{2k\pi}{7}=2\sin^2 \frac{k\pi}{7} - 2i\sin \frac{k\pi}{7}\cos \frac{k\pi}{7}.$$ Therefore $$z_k=\frac{1}{2\sin \frac{k\pi}{7}\left(\sin \frac{k\pi}{7}- i\cos \frac{k\pi}{7} \right)}=\frac{\sin \frac{k\pi}{7} + i\cos \frac{k\pi}{7}}{2\sin \frac{k\pi}{7}}=\frac{1}{2}\left(1+i\cot \dfrac{k\pi}{7}\right),$$ so that the real part is in fact $+\frac12.$
[/sp]

Ops...yes, that is another careless mistake and to be honest, I saw your $+\frac36$ and thought I made no typo, without realizing the minus sign in front...thank you Opalg for catching that!
 

Similar threads

Replies
6
Views
2K
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
636
  • · Replies 2 ·
Replies
2
Views
5K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
8
Views
2K