MHB Solving for Real \(x, \ y, \ z\)

  • Thread starter Thread starter sbhatnagar
  • Start date Start date
AI Thread Summary
The problem involves finding real numbers \(x\), \(y\), and \(z\) that satisfy the equations \(\frac{4\sqrt{x^2+1}}{x}=\frac{5\sqrt{y^2+1}}{y}=\frac{6\sqrt{z^2+1}}{z}\) and \(xyz=x+y+z\). An analytic solution reveals that \(x=\frac{\sqrt{7}}{3}\), \(y=\frac{5\sqrt{7}}{9}\), and \(z=3\sqrt{7}\) are valid answers. Additionally, the negative counterparts \(x=-\frac{\sqrt{7}}{3}\), \(y=-\frac{5\sqrt{7}}{9}\), and \(z=-3\sqrt{7}\) also satisfy the equations. The approach utilizes trigonometric identities and properties of triangles to derive these solutions. The discussion confirms that the problem can indeed be solved analytically.
sbhatnagar
Messages
87
Reaction score
0
Find \(x, \ y, \ z \ \in \mathbb{R} \) satisfying

\[\frac{4\sqrt{x^2+1}}{x}=\frac{5\sqrt{y^2+1}}{y}= \frac{6\sqrt{z^2+1}}{z} \ \ \ \text{and} \ \ \ xyz=x+y+z\]
 
Mathematics news on Phys.org
sbhatnagar said:
Find \(x, \ y, \ z \ \in \mathbb{R} \) satisfying

\[\frac{4\sqrt{x^2+1}}{x}=\frac{5\sqrt{y^2+1}}{y}= \frac{6\sqrt{z^2+1}}{z} \ \ \ \text{and} \ \ \ xyz=x+y+z\]
Numerically, there is a solution somewhere close to the point given by $$x=0.882,\quad y=1.470,\quad z=7.935.$$ But I don't see any analytic way to get an exact answer, and I doubt whether this problem has a neat solution.
 
With x=sinh(a), y=sinh(b), z=sinh(c), you can get rid of the roots:

tanh(a)/4 = tanh(b)/5 = tanh(c)/6
sinh(a) sinh(b) sinh(c) = sinh(a) + sinh(b) + sinh(c)

However, I do not know how to solve this.

and I doubt whether this problem has a neat solution.
Me too.
 
The problem can be solved analytically and the answers are

\[x=\frac{\sqrt{7}}{3}, \ y= \frac{5\sqrt{7}}{9} , \ z=3\sqrt{7}\]
 
Hint

Put \(x=\tan \alpha , \ \ y= \tan \beta , \ \ z=\tan \gamma \), \(\dfrac{-\pi}{2} < \alpha , \ \beta , \ \gamma < \dfrac{+\pi}{2} \).
 
Solution

Let \(x=\tan \alpha , \ y=\tan \beta , \ z= \tan \gamma\) such that \(\dfrac{-\pi}{2}<\alpha , \beta , \gamma < \dfrac{+\pi}{2}\)

\[ \frac{4\sqrt{\tan^2 \alpha + 1}}{\tan \alpha} = \frac{5\sqrt{\tan^2 \beta + 1}}{\tan \beta} = \frac{6\sqrt{\tan^2 \gamma + 1}}{\tan \gamma}\]

\[ \Rightarrow \ \frac{4}{\sin \alpha}= \frac{5}{\sin \beta}=\frac{6}{\sin \gamma}\]

Again

\[ \begin{aligned} \tan \alpha \tan \beta \tan \gamma &=\tan \alpha + \tan \beta +\tan \gamma \\ \tan \alpha (\tan \beta \tan \gamma -1) &=\tan\beta + \tan \gamma \\ -\tan \alpha &= \frac{\tan\beta + \tan \gamma }{1- \tan\beta \tan \gamma } \\ -\tan \alpha &= \tan(\beta +\gamma) \\ \tan(k\pi - \alpha) &= \tan(\beta + \gamma) \\ \alpha +\beta +\gamma &=k\pi\end{aligned} \]

Taking \(k=1\) we get \(\alpha +\beta +\gamma =\pi\) which implies that there exists a triangle whose angles are \(\alpha , \ \beta , \ \gamma\) and whose sides opposite to these angles are proportional to 4,5 and 6 respectively.

Let the sides of such a triangle be \(4k, \ 5k, \ 6k\).

If \(s\) is the semiperimeter of the triangle then

\[s=\frac{15k}{2}\]

\[\tan \frac{\alpha}{2}=\sqrt{\frac{(s-4k)(s-6k)}{s(s-5k)}}=\sqrt{\frac{\dfrac{5k}{2} \times \dfrac{3k}{2}}{\dfrac{15k}{2} \times \dfrac{7k}{2}}}=\sqrt{\frac{1}{7}}\]

\[x = \tan \alpha=\frac{2\tan \dfrac{\alpha}{2}}{1-\tan^2 \dfrac{\alpha}{2}}=\dfrac{2\sqrt{\dfrac{1}{7}}}{1-\dfrac{1}{7}}=\frac{\sqrt{7}}{3}\]

Similarly, \(y=\dfrac{5\sqrt{7}}{9}\) and \(z=3\sqrt{7}\).
 
sbhatnagar said:
The problem can be solved analytically and the answers are

\[x=\frac{\sqrt{7}}{3}, \ y= \frac{5\sqrt{7}}{9} , \ z=3\sqrt{7}\]

Hi sbhatnagar, :)

Note that, \(x=-\dfrac{\sqrt{7}}{3},\,y=-\dfrac{5\sqrt{7}}{9}\mbox{ and }z=-3\sqrt{7}\) is another solution.

Kind Regards,
Sudharaka.
 
Back
Top