- #1
dangsy
- 15
- 0
Homework Statement
[tex]\int_0^a x Sin^2\left(\frac{nx\pi}{a}\right) dx[/tex]
The Attempt at a Solution
[tex]\int_a^b f(x) g'(x)\, dx = \left[ f(x) g(x) \right]_{a}^{b} - \int_a^b f'(x) g(x)\, dx\[/tex]
[tex]\left| x \left[ \frac{nx\pi}{2a}-\frac{Sin\left(2nx\pi\right)}{4a}\right] \right|^{a}_{0}- \int_0^a \frac{nx\pi}{2a}-\frac{Sin\left(2nx\pi\right)}{4a}[/tex]
[tex]a \left[ \frac{n\pi}{2}-\frac{Sin\left(2n\pi\right)}{4}\right] - \int_0^a \frac{nx\pi}{2a}-\frac{Sin\left(2nx\pi\right)}{4a}[/tex]
[tex]a \left[ \frac{n\pi}{2}-\frac{Sin\left(2n\pi\right)}{4}\right] - \frac{1}{2a} \int_0^a nx\pi-\frac{Sin\left(2nx\pi\right)}{2}[/tex]
[tex]a \left[ \frac{n\pi}{2}-\frac{Sin\left(2n\pi\right)}{4}\right] - \frac{1}{2a}\left[ \int_0^a nx\pi-\int_0^a\frac{Sin\left(2nx\pi\right)}{2}\right][/tex]
[tex]a \left[ \frac{n\pi}{2}-\frac{Sin\left(2n\pi\right)}{4}\right] - \frac{1}{2a}\left[ n\pi\int_0^a x- \frac{1}{2}\int_0^a Sin\left(2nx\pi\right)\right][/tex]
[tex]a \left[ \frac{n\pi}{2}-\frac{Sin\left(2n\pi\right)}{4}\right] - \frac{1}{2a}\left[ n\pi \left | x\right |^{a}_{0} - \frac{1}{2} \left| Sin\left(2nx\pi\right)\right|^{a}_{0}\right][/tex]
[tex]a \left[ \frac{n\pi}{2}-\frac{Sin\left(2n\pi\right)}{4}\right] - \frac{1}{2a}\left[ n\pi a - \frac{1}{2} Sin\left(2na\pi\right)\right][/tex]
[tex]a \left[ \frac{n\pi}{2}-\frac{Sin\left(2n\pi\right)}{4}\right] - \left[ \frac{n\pi}{2} - \frac{1}{4a} Sin\left(2na\pi\right)\right][/tex]
[tex]Sin\left(2n\pi\right) = 0[/tex]
[tex]Sin\left(2na\pi\right) = 0 [/tex]
[tex]a \left[ \frac{n\pi}{2}\right] - \left[ \frac{n\pi}{2} \right][/tex]
I'm kinda stuck here...
I know the answer is [tex]\frac{a}{2}[/tex]
but I'm not sure how to get to it...maybe an integration mistake?