yonatan
- 2
- 0
Hi.
I'm following the solution of a Klein-Gordon PDE in a textbook. The equation is
\begin{align}<br /> k_{xx}(x,y) - k_{yy}(x,y) &= \lambda k(x,y) \\<br /> k(x,0) &= 0 \\<br /> k(x,x) &= - \frac{\lambda}{2} x<br /> \end{align}<br />
The book uses a change of variables
$\xi = x+y$, $\eta = x-y$
to write
\begin{align}<br /> k(x,y) &= G(\xi,\eta)\\<br /> k_{xx} &= G_{\xi \xi} + 2G_{\xi \eta} + G_{\eta \eta}\\<br /> k_{yy} &= G_{\xi \xi} - 2G_{\xi \eta} + G__{\eta \eta}<br /> \end{align}
and then they write the original PDE as
\begin{align}<br /> G_{\xi \eta}(\xi,\eta) &= \frac{\lambda}{4} G(\xi,\eta),\\<br /> G(\xi,\xi) &= 0,\\<br /> G(\xi,0) &= - \frac{\lambda}{4} \xi<br /> \end{align}<br />
I'm fine with the first line in the new PDE, but the other two, the boundary conditions, i don't get how they arrive at.
Can somebody help me understand? I'll be much appreciative :-)
J.
I'm following the solution of a Klein-Gordon PDE in a textbook. The equation is
\begin{align}<br /> k_{xx}(x,y) - k_{yy}(x,y) &= \lambda k(x,y) \\<br /> k(x,0) &= 0 \\<br /> k(x,x) &= - \frac{\lambda}{2} x<br /> \end{align}<br />
The book uses a change of variables
$\xi = x+y$, $\eta = x-y$
to write
\begin{align}<br /> k(x,y) &= G(\xi,\eta)\\<br /> k_{xx} &= G_{\xi \xi} + 2G_{\xi \eta} + G_{\eta \eta}\\<br /> k_{yy} &= G_{\xi \xi} - 2G_{\xi \eta} + G__{\eta \eta}<br /> \end{align}
and then they write the original PDE as
\begin{align}<br /> G_{\xi \eta}(\xi,\eta) &= \frac{\lambda}{4} G(\xi,\eta),\\<br /> G(\xi,\xi) &= 0,\\<br /> G(\xi,0) &= - \frac{\lambda}{4} \xi<br /> \end{align}<br />
I'm fine with the first line in the new PDE, but the other two, the boundary conditions, i don't get how they arrive at.
Can somebody help me understand? I'll be much appreciative :-)
J.
Last edited: