stanley.st
- 30
- 0
Hello i want to solve
\frac{\partial \rho}{\partial t}=\frac{\partial v_1\rho}{\partial x_1}+\frac{\partial v_2\rho}{\partial x_2}
for v_1 = -x_2 and v_2=x_1
i obtain equation
\frac{\partial \rho}{\partial t}+x_2\frac{\partial\rho}{\partial x_1}-x_1\frac{\partial \rho}{\partial x_2}=0
Charakteristik system is
\begin{array}{rcl}t'&=&1\\x_1'&=&x_2\\x_2'&=&-x_1\end{array}
Thanks
\frac{\partial \rho}{\partial t}=\frac{\partial v_1\rho}{\partial x_1}+\frac{\partial v_2\rho}{\partial x_2}
for v_1 = -x_2 and v_2=x_1
i obtain equation
\frac{\partial \rho}{\partial t}+x_2\frac{\partial\rho}{\partial x_1}-x_1\frac{\partial \rho}{\partial x_2}=0
Charakteristik system is
\begin{array}{rcl}t'&=&1\\x_1'&=&x_2\\x_2'&=&-x_1\end{array}
Thanks