Where did I make a mistake in simplifications of equations of EM field?

  • #1
olgerm
Gold Member
531
34
All tensors here are contravariant.

from maxwell equation in terms of E-field we know that:
$$\rho=\frac{\partial E_1}{\partial x_1}+\frac{\partial E_2}{\partial x_2}+\frac{\partial E_3}{\partial x_3}$$

from maxwell equation in terms of magnetic 4-potential in lorenz gauge we know that
$$-\rho=-\frac{\partial^2 A_0}{\partial x_0^2}+\frac{\partial^2 A_0}{\partial x_1^2}+\frac{\partial^2 A_0}{\partial x_2^2}+\frac{\partial^2 A_0}{\partial x_3^2}$$

we know how electric field is related to (contravariant) EM-tensor:
$$E_1=F_{10}$$
$$E_2=F_{20}$$
$$E_3=F_{30}$$

we know how EM-tensor is related to magnetic 4-potential:
$$F_{10}=\frac{\partial A_0}{\partial x_1}-\frac{\partial A_1}{\partial x_0}$$
$$F_{20}=\frac{\partial A_0}{\partial x_2}-\frac{\partial A_2}{\partial x_0}$$
$$F_{30}=\frac{\partial A_0}{\partial x_3}-\frac{\partial A_3}{\partial x_0}$$
by combining these equations we get:
$$\rho=\frac{\partial E_1}{\partial x_1}+\frac{\partial E_2}{\partial x_2}+\frac{\partial E_3}{\partial x_3}$$
$$\rho=\frac{\partial^2 A_0}{\partial x_0^2}-\frac{\partial^2 A_0}{\partial x_1^2}-\frac{\partial^2 A_0}{\partial x_2^2}-\frac{\partial^2 A_0}{\partial x_3^2}$$
$$E_1=F_{10}$$
$$E_2=F_{20}$$
$$E_3=F_{30}$$
$$F_{10}=\frac{\partial A_1}{\partial x_0}-\frac{\partial A_0}{\partial x_1}$$
$$F_{20}=\frac{\partial A_2}{\partial x_0}-\frac{\partial A_0}{\partial x_2}$$
$$F_{30}=\frac{\partial A_3}{\partial x_0}-\frac{\partial A_0}{\partial x_3}$$

simplifying:
$$\frac{\partial E_1}{\partial x_1}+\frac{\partial E_2}{\partial x_2}+\frac{\partial E_3}{\partial x_3}=\frac{\partial^2 A_0}{\partial x_0^2}-\frac{\partial^2 A_0}{\partial x_1^2}-\frac{\partial^2 A_0}{\partial x_2^2}-\frac{\partial^2 A_0}{\partial x_3^2}$$
$$E_1=\frac{\partial A_1}{\partial x_0}-\frac{\partial A_0}{\partial x_1}$$
$$E_2=\frac{\partial A_2}{\partial x_0}-\frac{\partial A_0}{\partial x_2}$$
$$E_3=\frac{\partial A_3}{\partial x_0}-\frac{\partial A_0}{\partial x_3}$$simplifying:

$$\frac{\partial }{\partial x_1}(\frac{\partial A_1}{\partial x_0}-\frac{\partial A_0}{\partial x_1})+
\frac{\partial}{\partial x_2}(\frac{\partial A_2}{\partial x_0}-\frac{\partial A_0}{\partial x_2})+
\frac{\partial}{\partial x_3}(\frac{\partial A_3}{\partial x_0}-\frac{\partial A_0}{\partial x_3})=
\frac{\partial^2 A_0}{\partial x_0^2}-\frac{\partial^2 A_0}{\partial x_1^2}-\frac{\partial^2 A_0}{\partial x_2^2}-\frac{\partial^2 A_0}{\partial x_3^2}$$

simplifying:

$$\frac{\partial^2 A_1}{\partial x_0*\partial x_1}-\frac{\partial^2 A_0}{\partial x_1^2}+
\frac{\partial^2 A_2}{\partial x_0*\partial x_2}-\frac{\partial^2 A_0}{\partial x_2^2}+
\frac{\partial^2 A_3}{\partial x_0*\partial x_3}-\frac{\partial^2 A_0}{\partial x_3^2}=
\frac{\partial^2 A_0}{\partial x_0^2}-\frac{\partial^2 A_0}{\partial x_1^2}-\frac{\partial^2 A_0}{\partial x_2^2}-\frac{\partial^2 A_0}{\partial x_3^2}$$

simplifying:
$$
-\frac{\partial^2 A_0}{\partial x_0^2}+
\frac{\partial^2 A_1}{\partial x_0*\partial x_1}+
\frac{\partial^2 A_2}{\partial x_0*\partial x_2}+
\frac{\partial^2 A_3}{\partial x_0*\partial x_3}=0
$$

simplifying:
$$\frac{\partial}{\partial x_0}(
-\frac{\partial A_0}{\partial x_0}+
\frac{\partial A_1}{\partial x_1}+
\frac{\partial A_2}{\partial x_2}+
\frac{\partial A_3}{\partial x_3})=0$$

is this result correct?
This seems wrong, but I do not understand what wrong assumptions or derivation mistakes I did.

using lorenz gauge condition
$$\frac{\partial A_1}{\partial x_1}+\frac{\partial A_2}{\partial x_2}+\frac{\partial A_3}{\partial x_3}+\frac{\partial^2 A_0}{\partial x_0}=0$$
we can also derive that
$$\frac{\partial^2 A_0}{\partial x_0^2}=0$$
and
$$\frac{\partial}{\partial x_0}(
\frac{\partial A_1}{\partial x_1}+
\frac{\partial A_2}{\partial x_2}+
\frac{\partial A_3}{\partial x_3})=0$$

and using maxwell equation in terms of magnetic 4-potential in lorenz gauge again also:
$$-\rho=\frac{\partial^2 A_0}{\partial x_1^2}+\frac{\partial^2 A_0}{\partial x_2^2}+\frac{\partial^2 A_0}{\partial x_3^2}$$
 
Last edited:
Physics news on Phys.org
  • #2
Let's do the derivation. We start with the homogeneous Maxwell equations (working in natural Heaviside-Lorentz units as you obviously do):
$$\vec{\nabla} \times \vec{E} + \partial_t \vec{B}=0, \quad \vec{\nabla} \cdot \vec{B}=0.$$
From the 2nd equation you know via Helmholtz's theorem that there's a vector potential for ##\vec{B}##,
$$\vec{B}=\vec{\nabla} \times \vec{A}.$$
Using this in the first equation, leads to
$$\vec{\nabla} \times (\vec{E}+\partial_t \vec{A})=0,$$
and again using Helmholtz's theorem this means that there's a scalar potential for the vector field in the brackets:
$$\vec{E} + \partial_t \vec{A}=-\vec{\nabla} \Phi \; \Rightarrow \; \vec{E}=-\partial_t \vec{A}-\vec{\nabla} \Phi.$$
The potentials ##\Phi## and ##\vec{A}## are not uniquely defined but any other choice,
$$\Phi'=\Phi+\partial_t \chi, \quad \vec{A}'=\vec{A}-\vec{\nabla} \chi$$
leads to the same fields ##\vec{E}## and ##\vec{B}##. This is the celebrated "gauge invariance" of electrodynamics.

To get equations of motion for the potentials, we need the inhomogeneous Maxwell equations,
$$\vec{\nabla} \times \vec{B} - \partial_t \vec{E}=\vec{j}, \quad \vec{\nabla} \cdot \vec{E}=\rho.$$
Plugging in the potentials we get
$$\vec{\nabla} (\vec{\nabla} \cdot \vec{A} + \partial_t \Phi) + \Box \vec{A}=\vec{j}, \quad -\vec{\nabla} \cdot (\partial_t \vec{A}+\vec{\nabla} \Phi)=\rho$$
with ##\Box=\partial_t^2-\Delta##).

Now due to the gauge invariance we can impose a constraint on the potentials, which (partially) "fixes the gauge". Very convenient for the general time-dependent case is the Lorenz gauge,
$$\partial_t \Phi+\vec{\nabla} \cdot \vec{A}=0.$$
Then the equations for the components of the vector potential and the scalar potential decouple:
$$\Box \vec{A}=\vec{j}, \quad \Box \Phi=\rho.$$

In the 4D formalism (using the ##(\eta_{\mu \nu})=\mathrm{diag}(1,-1,-1,-1)## convention) the Maxwell equations read
$$\partial_{\mu} F^{\mu \nu}=j^{\nu}, \quad \partial_{\mu} {^{\dagger}F}^{\mu \nu}=0,$$
where
$${^{\dagger}F}^{\mu \nu}=\epsilon^{\mu \nu \rho \sigma} F_{\rho \sigma}$$
is the Hodge dual of ##F_{\mu \nu}##.

From the latter equation you get the existence of the four-potential
$$F_{\mu \nu}=\partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu},$$
and the gauge transformation reads
$$A_{\mu}'=A_{\mu} + \partial_{\mu} \chi.$$
With the potentials the inhomogeneous equations read
$$\partial_{\mu} (\partial^{\mu} A^{\nu}-\partial^{\nu} A^{\mu})=j^{\nu}.$$
Again gauge invariance allows for a gauge-fixing constraint, and the Lorenz gauge turns out to be also a maniffestly covariant constraint, which explains why it simplifies the task so much:
$$\partial_{\mu} A^{\mu}=0.$$
From this you get
$$\partial_{\mu} \partial^{\mu} A^{\nu}=j^{\nu}.$$
In the (1+3) convention this indeed resolves to the same equations as directly derived in this convention. The Lorenz-gauge constraint translates indeed to
$$\partial_{\mu} A^{\mu} = \frac{\partial A^{\mu}}{\partial x^{\mu}} = \partial_t A^0 + \vec{\nabla} \cdot \vec{A}=0$$
and
$$\partial_{\mu} \partial^{\mu}= \eta^{\mu \nu} \partial_{\mu} \partial_{\nu} =\partial_0^2-\vec{\nabla}^2=\Box.$$
 

1. How can I identify mistakes in simplifications of equations of EM field?

To identify mistakes in simplifications of equations of EM field, carefully review each step of your simplification process. Check for errors in algebraic manipulations, application of mathematical rules, and interpretation of physical concepts. Make sure to double-check your work and seek feedback from peers or mentors.

2. What are common errors to watch out for in simplifying equations of EM field?

Common errors in simplifying equations of EM field include missing terms, incorrect signs, algebraic mistakes, misinterpretation of physical properties, and neglecting certain terms that may be significant in the context of the problem. Be vigilant in your simplification process to avoid these errors.

3. How can I improve my skills in simplifying equations of EM field?

To improve your skills in simplifying equations of EM field, practice solving a variety of problems, seek feedback on your work, study textbooks and resources on electromagnetic theory, and engage in discussions with peers and experts in the field. Continuously challenging yourself and seeking opportunities for learning and growth will help enhance your proficiency.

4. What resources can I use to help me with simplifications of equations of EM field?

There are various resources available to assist you with simplifications of equations of EM field, including textbooks on electromagnetic theory, online tutorials, academic courses, research papers, and software tools for mathematical computations. Utilize these resources to deepen your understanding, clarify concepts, and improve your problem-solving skills.

5. How important is it to correct mistakes in simplifications of equations of EM field?

Correcting mistakes in simplifications of equations of EM field is crucial for ensuring the accuracy and validity of your results. Errors in simplification can lead to incorrect conclusions, flawed interpretations, and unreliable predictions in electromagnetic phenomena. By identifying and rectifying mistakes, you can enhance the credibility and rigor of your work in the field of electromagnetic theory.

Similar threads

  • Classical Physics
Replies
1
Views
607
Replies
3
Views
2K
Replies
2
Views
862
Replies
3
Views
797
  • Electromagnetism
Replies
19
Views
2K
  • Special and General Relativity
Replies
7
Views
1K
  • Topology and Analysis
Replies
12
Views
3K
  • Special and General Relativity
2
Replies
47
Views
3K
  • Electromagnetism
Replies
9
Views
2K
Replies
2
Views
1K
Back
Top