- #1
walter9459
- 20
- 0
Homework Statement
Obtain all solutions of the equation partial ^2 u/partial x^2 - partial u/partial y = u of the form u(x,y)=(A cos alpha x + B sin alphax)f(y) where A, B and alpha are constants. Find a solution of the equation for which u=0 when x=0; u=0 when x = pi, u=x when y=1.
Homework Equations
The solution is u = -2 summuation from n=1 to infinity (((-1)^n)/n)e^((1+n)(1-y)) sin nx.The Attempt at a Solution
I believe the next step is to use u(x,Y) = X(x)Y(y) so the equation then becomes (1/x) partial ^2 X/partial x^2 - (1/y)partial Y/partial y = u. Then I get lost, can I get some help on how I would solve this problem?