MHB Solving srirahulan's "trig fix"

  • Thread starter Thread starter Sudharaka
  • Start date Start date
AI Thread Summary
The discussion centers on proving the equation \[\frac{1+\tan^{2}(\frac{\pi}{4}-A)}{1-\tan^{2}(\frac{\pi}{4}-A)}=\cos 2A\]. The left-hand side simplifies to \(\csc 2A\) through trigonometric identities, indicating a potential error in the original equation. Participants agree that there may be a mistake or typo in the question posed by srirahulan. The conversation highlights the importance of verifying mathematical statements for accuracy. The thread concludes with a note on the possibility of the original poster returning for further clarification.
Sudharaka
Gold Member
MHB
Messages
1,558
Reaction score
1
srirahulan's question titled "trig fix" from Math Help Forum,

Prove that, \[\frac{1+\tan^{2}(\frac{\pi}{4}-A)}{1-\tan^{2}(\frac{\pi}{4}-A)}=\cos 2A\]

Hi srirahulan,

Consider the left hand side of the equation.

\begin{eqnarray}

\frac{1+\tan^{2}(\frac{\pi}{4}-A)}{1-\tan^{2}(\frac{\pi}{4}-A)}&=&\frac{\cos^{2}(\frac{\pi}{4}-A)+\sin^{2}(\frac{\pi}{4}-A)}{\cos^{2}(\frac{\pi}{4}-A)-\sin^{2}(\frac{\pi}{4}-A)}\\

&=&\frac{1}{\cos 2(\frac{\pi}{4}-A)}\\

&=&\frac{1}{\cos (\frac{\pi}{2}-2A)}\\

&=&\frac{1}{\sin 2A}\\

\end{eqnarray}

\[\therefore \frac{1+\tan^{2}(\frac{\pi}{4}-A)}{1-\tan^{2}(\frac{\pi}{4}-A)} = \csc 2A\]

So I think there is either a mistake in the question or a typo on your part. :)
 
Mathematics news on Phys.org
Sudharaka said:
So I think there is either a mistake in the question or a typo on your part. :)
I agree. Since the OP has only been gone for a couple of years, maybe he will come back.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top