Solving the Quasi-Linear 1-D Wave Equation

  • Context: MHB 
  • Thread starter Thread starter Dustinsfl
  • Start date Start date
  • Tags Tags
    Wave Wave equation
Click For Summary

Discussion Overview

The discussion revolves around solving the quasi-linear 1-D wave equation with piecewise constant initial conditions. Participants explore the formation of shocks at specific locations and the implications for the density field over time, including the derivation of characteristic lines and shock velocities.

Discussion Character

  • Exploratory
  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant presents the quasi-linear wave equation and initial conditions, suggesting that two shocks will form at \(x = \pm x_0\).
  • Another participant attempts to derive relationships between time and space using parameterization, questioning if their approach is correct.
  • A subsequent post discusses the Jacobian determinant to analyze shock formation, indicating a potential for shock based on the derived expressions.
  • Another participant reformulates the equations to express time in terms of space and discusses conditions for shock occurrence, using specific values to illustrate the concept.
  • A participant raises the question of determining shock velocity, providing a formula for shock velocity based on density and discussing the implications for the specific shock locations.

Areas of Agreement / Disagreement

Participants express various methods and interpretations regarding shock formation and velocity, with no clear consensus on the correctness of each approach. Multiple competing views remain on the derivation and implications of the equations presented.

Contextual Notes

Some participants' calculations depend on specific assumptions about the initial conditions and the nature of the wave equation. The discussion includes unresolved mathematical steps and varying interpretations of shock behavior.

Who May Find This Useful

This discussion may be of interest to those studying wave equations, shock formation in fluid dynamics, or mathematical modeling in physics.

Dustinsfl
Messages
2,217
Reaction score
5
Consider the quasi-linear 1-D wave equation
$$
\frac{\partial\rho}{\partial t} + 2\rho\frac{\partial\rho}{\partial x} = 0
$$
with the piecewise constant initial conditions
$$
\rho(x,0) = \begin{cases}
\rho_1, & x < -x_0\\
\rho_2, & -x_0 < x < x_0\\
\rho_3, & x > x_0
\end{cases}
$$
where $\rho_1 > \rho_2 > \rho_3$ and $\rho_i, x_0\in\mathbb{R}$ with $i = 1, 2, 3$.Argue that two shocks form at $x = \pm x_0$ in this case and sketch the space-time diagram for the density field.

I have no idea on what to do or how to start.
 
Physics news on Phys.org
$\frac{dt}{ds} =1\Rightarrow t = s + c$ but when $t(0) = 0$ $t = s$.

$\frac{dx}{ds} = 2\rho\Rightarrow x = 2\rho t + x_0$ at $t=0$, $x=x_0$. So $x_0 = x-2\rho t$.

$$
\rho(x-2\rho t,0) = \begin{cases}
\rho_1, & x-2\rho t < -x_0\\
\rho_2, & -x_0 < x-2\rho t < x_0\\
\rho_3, & x-2\rho t > x_0
\end{cases}
$$

Is this what I should be doing? If so, what next?
 
Last edited:
Then we obtain $t(r) = r$, $x(r) = 2\rho r + x_0$, and $\rho(r) = c$ when $t = 0$.
Let $s$ be a parameter.
Then $\rho(r;s) = f(s)$, $x(r;s) = 2tf(s) + s$, and $t(r;s) = r$.
In order to determine shock, we need to find the Jacobian.
\begin{alignat*}{3}
\mathcal{J} & = & \det\begin{pmatrix}
x_r & x_s\\
t_r & t_s
\end{pmatrix}\\
& = & \frac{\partial x}{\partial r}\frac{\partial t}{\partial s} - \frac{\partial x}{\partial s}\frac{\partial t}{\partial r}\\
& = & 0 - (2tf'(s) + 1)\\
& = & -2tf'(s) - 1
\end{alignat*}

Correct?
 
Since we have that $t = r$, we can make the substitution
$$
x = 2t\rho + x_0.
$$
Let's put the equation in the form of $y = mx + b$ or in our case $t = mx + x_0$.
So we have
$$
t = \frac{x - x_0}{2\rho}.
$$
A shock will occur when two characteristic lines intersect or there is a jump discontinuity.
To view that $\pm x_0$ causes shock, for simplicity, let $x_0 = 1$, $\rho_1 = 3$, $\rho_2 = 2$, and $\rho_3 = 1$.
Then the characteristic lines are
\begin{alignat*}{5}
t & = & \frac{x - 1}{6}, & \ \ \text{for} & \ \ x < -1\\
t & = & \frac{x - 1}{4}, & \ \ \text{for} & \ \ -1 < x < 1\\
t & = & \frac{x - 1}{2}, & \ \ \text{for} & \ \ x > 1
\end{alignat*}
At $-x_0 = -1$, we have $t = \frac{-1}{3}$ and $t = \frac{-1}{2}$.
Therefore, we have a jump discontinuity at $-x_0$.
For $x_0 = 1$, $t = 0$, i.e. we have two intersecting characteristic lines.
Since the choice of $x_0$ and $\rho$ were arbitrary, $\pm x_0$ will cause a shock for all choices.
 
How can I determine shock velocity?

We know that $q = \rho u$ and that $2\rho = \frac{dq(\rho)}{d\rho}$.
Solving this equation we get that $q = \rho^2$.
The shock velocity is $\frac{dx_s}{dt} = \frac{q(x_{s-},t) - q(x_{s+},t)}{\rho(x_{s-},t) - \rho(x_{s+},t)}$.
The shock velocity for $x = -x_0$ is
$$
\frac{dx_s}{dt} = \frac{\rho_1^2 - \rho_2^2}{\rho_1 - \rho_2},
$$
and when $x = x_0$, we have
$$
\frac{dx_s}{dt} = \frac{\rho_2^2 - \rho_3^2}{\rho_2 - \rho_3}.
$$

Correct?What is this asking?Determine the location in space-time where the shocks intersect.
Again use the concept of the jump condition to determine the shock speed of the single shock front that results from the merging of the two initial shocks.
 
Last edited:

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 0 ·
Replies
0
Views
668
  • · Replies 7 ·
Replies
7
Views
3K
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
9
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K