MHB Solving trigonometry equations

  • Thread starter Thread starter fordy2707
  • Start date Start date
  • Tags Tags
    Trigonometry
AI Thread Summary
To solve the equation cos(x) + 2cos²(x) = 0 in the interval (0, 6π), it is factored into cos(x)(1 + 2cos(x)) = 0. This leads to two cases: cos(x) = 0, resulting in solutions x = π/2 + nπ, and 1 + 2cos(x) = 0, giving cos(x) = -1/2, which leads to solutions x = 2π/3 + 2πn and 4π/3 + 2πn. The solutions must be calculated for n values that keep x within the specified interval. The breakdown of the solution process emphasizes the importance of factoring and solving each part of the equation separately.
fordy2707
Messages
24
Reaction score
0
Hi all, can you show me how to calculate this and breakdown how you get to the answer for me to Understand ,I have been shown what is believed to be the answer from the notes but not a clue How it was reached.

Find all the solutions to the following equation at interval 0,6PI

cos(x) + 2cos^2(x)=0

=

Cosx(1+2cosx)=0
Cosx=cos(pie/2)
X=2npie+_pie/2
Cosx=cos(2pie/3)

Many thanks
 
Mathematics news on Phys.org
fordy2707 said:
Hi all, can you show me how to calculate this and breakdown how you get to the answer for me to Understand ,I have been shown what is believed to be the answer from the notes but not a clue How it was reached.

Find all the solutions to the following equation at interval 0,6PI

cos(x) + 2cos^2(x)=0

=

Cosx(1+2cosx)=0
Cosx=cos(pie/2)
X=2npie+_pie/2
Cosx=cos(2pie/3)

Many thanks
your approach is good. 1st you need to find a particular solution then from it all solutions in the given range.

$\cos(x)(1+2\cos(x)) = 0$
gives $\cos(x) = 0$ and we have particular solution $x = \dfrac{\pi}{2}$ givinin solution in the range
$x = \dfrac{\pi}{2}+ n \pi $ ( n is from 0 to 5) and ,$x =- \dfrac{\pi}{2}+ n \pi $ ( n is from 1 to 6) so that value is in the range

2nd set of solution
$\cos(x) = \frac{-1}{2}$ or $ x= \frac{2\pi}{3}$ particular solution

$x = \dfrac{2\pi}{3}+ n \pi $ ( n is from 0 to 5) and ,$x =- \dfrac{2\pi}{3}+ n \pi $ ( n is from 1 to 6) so that value is in the range
 
0-6PI is that the equivalent of 3 full cycles ,1080 degress ?
 
fordy2707 said:
Cosx(1+2cosx)=0
Cosx=cos(pie/2)
X=2npie+_pie/2
Cosx=cos(2pie/3)
(Shake) [math]\pi[/math] is spelled "pi." Pie refers to something you eat for breakfast. (Sun)

-Dan
 
fordy2707 said:
Hi all, can you show me how to calculate this
and breakdown how you get to the answer for me to Understand.
I have been shown what is believed to be the answer from the notes but not a clue how it was reached.

Find all the solutions to the following equation at interval (0,\,6\pi).

. . \cos(x) + 2\cos^2(x) \;=\;0
You have a quadratic equation.

Factor: .\cos x(1 + 2\cos x) \;=\;0

Set each factor equal to zero and solve.

. . \cos x \;=\;0 \quad\Rightarrow\quad x \;=\;\tfrac{\pi}{2} + \pi n

. . 1 + 2\cos x \:=\:0 \quad\Rightarrow\quad \cos x \:=\:-\tfrac{1}{2} \quad\Rightarrow\quad x \:=\:\left( \begin{array}{cc}\frac{2\pi}{3} + 2\pi n \\ \frac{4\pi}{3} + 2\pi n \end{array}\right)


 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top