Spatial curvature - effect on objects

  • Thread starter Thread starter nutgeb
  • Start date Start date
  • Tags Tags
    Curvature
nutgeb
Messages
294
Reaction score
1
My understanding is that a physical object moving through a spatial curvature gradient (as distinguished from spacetime curvature gradient) will not automatically experience an internally stress-free change in its physical dimensions consistent with the changing background spatial geometry. But the changing spatial geometry can introduce irresistible internal stresses in the object.

Consider a VERY large, simple wagon wheel (with rim, spokes and hub) in free fall inward toward the event horizon of a BH. The wagon wheel was originally constructed very far from the BH. It's a supermassive BH, so the tidal effects are not important near the horizon. (Also, assume that the wheel is free falling at much less than the BH's escape velocity.)

As the radial distance from the wheel to the BH decreases, the spatial curvature progressively increases. Increasing spatial curvature causes the proper length of the wheel's spokes to become longer relative to the circumference of the rim; or it can be thought of as causing the circumference of the rim to decrease relative to the length of the spokes. The circumference increasingly becomes < 2\pi r.

The wheel's own geometry does not change automatically, in a stress-free way, along with the changing background spatial geometry. However, the changing spatial geometry introduces inexorable internal stresses into the wheel. The wheel was constructed (in essentially flat space) with its circumference equal to 2 \pi times its proper radius. But such a 2\pi r planar object cannot exist in space that has significantly positively curved geometry. Therefore, stresses will be introduced that cause the wheel's spokes and hub to deform (bend) out of the plane (causing the wheel to become bowl-shaped), or cause the wheel to fragment (break apart). It's like projecting the surface of a globe's hemisphere onto flat paper -- gaps will appear in the circumference.

Conversely, if the wheel originally was constructed near the BH (in highly curved space), and then is moved away from it, its original circumference was < 2 \pi r. Therefore the stresses resulting from the curvature gradient will cause the rim of the wheel to deform out of the plane, or will fragment the wheel. In this case it's like trying to wrap a flat sheet of cardboard around the hemispherical surface of a globe -- there will be extra material at the outer edge of the cardboard that can't lie flat without folding.

Is this description correct?
 
Last edited:
Physics news on Phys.org
I should have qualified my examples with the condition that the wheel components are completely inelastic. If on the other hand the wheel components are stretchy/compressible, the wheel's deformation out of the plane, or fragmentation, could be reduced or avoided entirely.
 
Any Born Rigidity objections to this scenario can be rendered insignificant by disassembling the very large wheel into small pieces near the BH, and then individually moving them away from the BH. When it is later reassembled far from the BH, it will prove impossible to fit the pieces back into the wheel's original shape, due to the fact that the background spatial curvature has changed while the shapes and sizes of the pieces have not.
 
nutgeb said:
Any Born Rigidity objections to this scenario can be rendered insignificant by disassembling the very large wheel into small pieces near the BH, and then individually moving them away from the BH. When it is later reassembled far from the BH, it will prove impossible to fit the pieces back into the wheel's original shape, due to the fact that the background spatial curvature has changed while the shapes and sizes of the pieces have not.
So no one disagrees with my conclusion, particularly as stated in the quote above?
 
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
So, to calculate a proper time of a worldline in SR using an inertial frame is quite easy. But I struggled a bit using a "rotating frame metric" and now I'm not sure whether I'll do it right. Couls someone point me in the right direction? "What have you tried?" Well, trying to help truly absolute layppl with some variation of a "Circular Twin Paradox" not using an inertial frame of reference for whatevere reason. I thought it would be a bit of a challenge so I made a derivation or...
Back
Top