Split Short Exact Sequences .... Bland, Proposition 3.2.6 .... ....

  • Context: MHB 
  • Thread starter Thread starter Math Amateur
  • Start date Start date
  • Tags Tags
    Sequences Short Split
Click For Summary
SUMMARY

The discussion centers on Proposition 3.2.6 from Paul E. Bland's "Rings and Their Modules," specifically regarding the proof's assertion that the expression $$(x - x') - f(f'(x - x'))$$ belongs to the intersection of the kernel of $f'$ and the image of $f$, which equals zero. Participants clarify that both $x - f(f'(x))$ and $x' - f(f'(x'))$ are in the kernel of $f'$, leading to the conclusion that the difference $u$ must also be zero. This establishes that the function $g'$ is well-defined, as it yields the same output regardless of the choice of representative from the pre-image of $b$.

PREREQUISITES
  • Understanding of exact sequences in module theory
  • Familiarity with the concepts of kernels and images in algebra
  • Knowledge of isomorphisms in the context of modules
  • Proficiency in manipulating algebraic expressions involving modules
NEXT STEPS
  • Study the properties of exact sequences in module theory
  • Learn about kernels and images in the context of homomorphisms
  • Explore the concept of isomorphism in algebraic structures
  • Investigate the implications of well-defined functions in mathematical proofs
USEFUL FOR

Mathematicians, particularly those focused on algebra and module theory, as well as students seeking to deepen their understanding of exact sequences and their applications in abstract algebra.

Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Paul E. Bland's book "Rings and Their Modules" ...

Currently I am focused on Section 3.2 Exact Sequences in $$\text{Mod}_R$$ ... ...

I need some help in order to fully understand the proof of Proposition 3.2.6 ...

Proposition 3.2.6 and its proof read as follows:
View attachment 8078
In the above proof of Proposition 3.2.6 we read the following:"... ... Then $$x - x'\in \text{Ker } g = \text{Im } f$$, so $$(x - f( f' (x))) - (x' - f( f' (x'))) = ( x - x') - ( f ( f'(x) ) - f ( f'(x') ) )$$

$$= ( x - x') - f ( f' ( x - x') )$$

$$\in \text{Ker } f' \cap \text{Im } f = 0$$ ... ...

Thus it follows that $$g'$$ is well-defined ... ... "Can someone please explain exactly why/how $$( x - x') - f ( f' ( x - x') ) \in \text{Ker } f' \cap \text{Im } f = 0$$ ... ... Further, can someone please explain in some detail how the above working shows that $$g'$$ is well-defined ...
Help will be much appreciated ...

Peter
 
Physics news on Phys.org
Hi Peter,

By a previous remark, each of $x-f(f'(x))$ and $x'-f(f'(x'))$ belongs to $\ker f'$. As $\ker f'$ is a sub-module, this shows that
$$u = (x-f(f'(x))) - (x'-f(f'(x'))) \in\ker f'$$

on the other hand, we have $x-x'\in\ker g=\mathrm{img}\:f$, and, obviously, $f(\ldots)\in\mathrm{img}\:f$. This shows that we also have $u\in\mathrm{img}\:f$, and, as $\ker f'\cap\mathrm{img}\:f=0$, $u=0$.

This shows that, if you use $x'$ instead of $x$ (subject to $g(x')=g(x)$) in the definition of $g'(y)$, the difference will be $u=0$, which means that you will get the same value for $g'(y)$; this is what "g' is well-defined" means.

This proof looks a little like black magic, but there is a trick that allows you to see what happens. You will end up proving that $M$ is isomorphic to $M_1\times M_2$. Of course, you cannot use that in the proof, but you can use it to understand what happens in the proof.

Knowing that, we can write any element of $M$ as $(a,b)$, with $a\in M_1$ and $b\in M_2$. You can define:
$$\begin{align*}
f(a) &= (a,0)\\
f'(a,b) &= a\\
g(a,b) &= b\\
\end{align*}$$
and you are trying to define $g'(b)$ as $(0,b)$. If $x$ is any element that maps to $b$, like $(c,b)$, you cannot simply define $g'(b)=(c,b)$, because there can be many possible elements $(c,b)$ in the pre-image of $b$. The trick is to use $f$ and $f'$ to get rid of $c$. Specifically, you have, using the formula in the text : $(c,b) - f(f'(c,b))= (c,b) - f(c) = (c,b) - (c,0) = (0,b)$, and this is what you want.
 
Last edited:
castor28 said:
Hi Peter,

By a previous remark, each of $x-f(f'(x))$ and $x'-f(f'(x'))$ belongs to $\ker f'$. As $\ker f'$ is a sub-module, this shows that
$$u = (x-f(f'(x))) - (x'-f(f'(x'))) \in\ker f'$$

on the other hand, we have $x-x'\in\ker g=\mathrm{img}\:f$, and, obviously, $f(\ldots)\in\mathrm{img}\:f$. This shows that we also have $u\in\mathrm{img}\:f$, and, as $\ker f'\cap\mathrm{img}\:f=0$, $u=0$.

This shows that, if you use $x'$ instead of $x$ (subject to $g(x')=g(x)$) in the definition of $g'(y)$, the difference will be $u=0$, which means that you will get the same value for $g'(y)$; this is what "g' is well-defined" means.

".
Thanks castor28 ... most helpful ...

Most interesting and enlightening is when you write: " ... ... This proof looks a little like black magic, but there is a trick that allows you to see what happens. You will end up proving that $M$ is isomorphic to $M_1\times M_2$. Of course, you cannot use that in the proof, but you can use it to understand what happens in the proof.

Knowing that, we can write any element of $M$ as $(a,b)$, with $a\in M_1$ and $b\in M_2$. You can define:
$$\begin{align*}
f(a) &= (a,0)\\
f'(a,b) &= a\\
g(a,b) &= b\\
\end{align*}$$
and you are trying to define $g'(b)$ as $(0,b)$. If $x$ is any element that maps to $b$, like $(c,b)$, you cannot simply define $g'(b)=(c,b)$, because there can be many possible elements $(c,b)$ in the pre-image of $b$. The trick is to use $f$ and $f'$ to get rid of $c$. Specifically, you have, using the formula in the text : $(c,b) - f(f'(c,b))= (c,b) - f(c) = (c,b) - (c,0) = (0,b)$, and this is what you want. ... ... Still reflecting on these ideas ...

Thanks again ...

Peter
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 25 ·
Replies
25
Views
4K
Replies
2
Views
2K
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K