Automotive Spring and damper on rocker

  • Thread starter Thread starter LowBlackFast
  • Start date Start date
  • Tags Tags
    Damper Spring
AI Thread Summary
The discussion explores the concept of using a progressive pull spring and a digressive shock on a rocker to manage axle timing and rotation. The proposed system aims to create a dynamic response where the spring becomes solid under torque, reducing axle rotation speed, while the shock softens as velocity decreases, allowing for controlled compliance. The interaction of these components is likened to a series mass damper, although the mathematical modeling is acknowledged as complex. Participants emphasize the importance of understanding the forces involved, leading to a second-order differential equation that defines the system's behavior. The goal is to achieve timed compliance while maintaining torque at the axle.
LowBlackFast
Messages
2
Reaction score
1
Can someone help me evaluate an idea that I have?
I'm investigating the idea of placing a very progressive pull spring and a digressive shock on a rocker to control the timing and rotation of an axle.

I could be way off, but here's the scenario in my head. Both shock and spring are being pulled when a torque is applied. Spring is progressive, eventually hitting a bushing and going solid. The shock is digressive in rebound and significantly stiffer than the spring at high speed. But as the spring goes solid rotation speed of the axle will decrease. As the velocity decreases the shock becomes softer, thus allowing rotational compliance that can be "timed"

I apologize in advance if I'm ignoring some fundamentals. I believe this would act in a similar manner as a series mass damper? I'm not sure on the math. It's kinda over my head.

Thanks
 

Attachments

  • Screenshot 2023-01-15 162118.jpg
    Screenshot 2023-01-15 162118.jpg
    24.8 KB · Views: 116
Engineering news on Phys.org
What I'm aiming to gain is timed compliance while maintaining the torque applied at the axle.
 
Last edited by a moderator:
Hi LowBlackFast. This site explains the spring mass damper. https://www.shimrestackor.com/Physics/Spring_Mass_Damper/spring-mass-damper.htm

When you add all the forces of each component (the load, the damper, and the spring) you get a 2nd order differential equation. The solution the characteristic equation are the constants are tau and zeta. It seems like you are wanting the frequency which is a function of tau and zeta.
 
Last edited:
Thread 'What type of toilet do I have?'
I was enrolled in an online plumbing course at Stratford University. My plumbing textbook lists four types of residential toilets: 1# upflush toilets 2# pressure assisted toilets 3# gravity-fed, rim jet toilets and 4# gravity-fed, siphon-jet toilets. I know my toilet is not an upflush toilet because my toilet is not below the sewage line, and my toilet does not have a grinder and a pump next to it to propel waste upwards. I am about 99% sure that my toilet is not a pressure assisted...
After over 25 years of engineering, designing and analyzing bolted joints, I just learned this little fact. According to ASME B1.2, Gages and Gaging for Unified Inch Screw Threads: "The no-go gage should not pass over more than three complete turns when inserted into the internal thread of the product. " 3 turns seems like way to much. I have some really critical nuts that are of standard geometry (5/8"-11 UNC 3B) and have about 4.5 threads when you account for the chamfers on either...
Thread 'Physics of Stretch: What pressure does a band apply on a cylinder?'
Scenario 1 (figure 1) A continuous loop of elastic material is stretched around two metal bars. The top bar is attached to a load cell that reads force. The lower bar can be moved downwards to stretch the elastic material. The lower bar is moved downwards until the two bars are 1190mm apart, stretching the elastic material. The bars are 5mm thick, so the total internal loop length is 1200mm (1190mm + 5mm + 5mm). At this level of stretch, the load cell reads 45N tensile force. Key numbers...

Similar threads

Back
Top