- 1,816
- 33
Hi,
I am looking at the following system of ODEs:
<br /> \begin{eqnarray*}<br /> \dot{\omega}_{3}+\alpha\omega_{3} & = & \frac{\beta_{1}+\beta_{3}}{\rho_{0}}J_{3} \\<br /> \dot{J_{3}}+2(\alpha_{2}-\alpha_{1})\beta_{2} & = & 0 \\<br /> \dot{\beta}_{1}+\omega_{3}\beta_{2} & = & 0 \\<br /> \dot{\beta}_{2}-\frac{\bar{\alpha}}{2}J_{3}+\frac{1}{2}\omega_{3}(\beta_{3}-\beta_{1}) & = & 0 \\<br /> \dot{\beta}_{1}+\dot{\beta}_{3} & = & 0<br /> \end{eqnarray*}<br />
With suitable scaling I can reduce the system down to the following:
<br /> \begin{eqnarray*}<br /> \dot{\omega} & = & -\omega+CJ \\<br /> \dot{J} & = & -\beta_{2} \\<br /> \dot{\beta}_{1} & = & -\omega\beta_{2} \\<br /> \dot{\beta}_{2} & = & \hat{\alpha}J-\frac{1}{2}\omega(C-2\beta_{1})<br /> \end{eqnarray*}<br />
Where \beta_{1}(t)+\beta_{3}(t)=C. As I said in the title, I am interested in the stability of this system, so the first thing I so is look for the equilibrium points. I find there are two such points, one rather trivial one which is easy to analyse is (\omega,J,\beta_{1},\beta_{2})=(0,0,C/2,0), and another one which is: (\omega,J,\beta_{1},\beta_{2})=(CJ_{0},J_{0},(C-2\hat{\alpha})/2),0).
So my question is this: How do I determine J_{0}? Do I consider it a parameter and look at different cases?
I am looking at the following system of ODEs:
<br /> \begin{eqnarray*}<br /> \dot{\omega}_{3}+\alpha\omega_{3} & = & \frac{\beta_{1}+\beta_{3}}{\rho_{0}}J_{3} \\<br /> \dot{J_{3}}+2(\alpha_{2}-\alpha_{1})\beta_{2} & = & 0 \\<br /> \dot{\beta}_{1}+\omega_{3}\beta_{2} & = & 0 \\<br /> \dot{\beta}_{2}-\frac{\bar{\alpha}}{2}J_{3}+\frac{1}{2}\omega_{3}(\beta_{3}-\beta_{1}) & = & 0 \\<br /> \dot{\beta}_{1}+\dot{\beta}_{3} & = & 0<br /> \end{eqnarray*}<br />
With suitable scaling I can reduce the system down to the following:
<br /> \begin{eqnarray*}<br /> \dot{\omega} & = & -\omega+CJ \\<br /> \dot{J} & = & -\beta_{2} \\<br /> \dot{\beta}_{1} & = & -\omega\beta_{2} \\<br /> \dot{\beta}_{2} & = & \hat{\alpha}J-\frac{1}{2}\omega(C-2\beta_{1})<br /> \end{eqnarray*}<br />
Where \beta_{1}(t)+\beta_{3}(t)=C. As I said in the title, I am interested in the stability of this system, so the first thing I so is look for the equilibrium points. I find there are two such points, one rather trivial one which is easy to analyse is (\omega,J,\beta_{1},\beta_{2})=(0,0,C/2,0), and another one which is: (\omega,J,\beta_{1},\beta_{2})=(CJ_{0},J_{0},(C-2\hat{\alpha})/2),0).
So my question is this: How do I determine J_{0}? Do I consider it a parameter and look at different cases?