What are the Standard Integrals?

Click For Summary
Standard integrals are essential mathematical expressions frequently used in problem-solving. This discussion provides a comprehensive list of integrals for polynomial, exponential, trigonometric, hyperbolic, and inverse trigonometric functions, along with integrals for quadratic and root quadratic functions. Key integrals include those for basic functions like x^n, e^x, sin x, and cos x, as well as more complex forms involving logarithmic and arc functions. The article serves as a valuable reference for students and professionals needing quick access to these integral formulas. Understanding these standard integrals is crucial for effective calculus problem-solving.
Messages
19,851
Reaction score
10,886
Definition/Summary

This article is a list of standard integrals, i.e. the integrals which are commonly used while evaluating problems and as such, are taken for granted. This is a reference article, and can be used to look up the various integrals which might help while solving problems.

Equations



Extended explanation

List of Standard Integrals


1. Integrals of Polynomial functions

i] \int x^n \,dx = \frac{x^{n + 1}}{n + 1} + C \hspace{0.25in} (n \ne -1)

ii] \int \frac{1}{x} \,dx = \log_e |x| + C

2. Integrals of Exponential functions

iii] \int e^x \,dx = e^x + C

iv] \int a^x \,dx = \frac{a^x}{\log_e a} + C

2. Integrals of Trignometric functions

v] \int \sin x \,dx = - \cos x + C

vi] \int \cos x \,dx = \sin x + C

vii] \int \sec^2 x \,dx = \tan x + C

viii] \int \csc^2 x \,dx = -\cot x + C

ix] \int \sec x \tan x \,dx = \sec x + C

x] \int \csc x \cot x \,dx = -\csc x + C

xi] \int \cot x \,dx = \log_e |\sin x| + C

xii] \int \tan x \,dx = -\log_e |\cos x| + C

xiii] \int \sec x \,dx = \log_e |\sec x + \tan x|\ +\ C\ = \cosh^{-1}(\sec x)\ +\ C
= sech^{-1}(\cos x)\ +\ C\ = \tanh^{-1}(\sin x)\ +\ C\ = \coth^{-1}(\csc x)\ +\ C


xiv] \int \csc x \,dx = \log_e |\csc x - \cot x|\ +\ C\ = -\cosh^{-1}(\csc x)\ +\ C
= -sech^{-1}(\sin x)\ +\ C\ = -\tanh^{-1}(\cos x)\ +\ C\ = -\coth^{-1}(\sec x)\ +\ C
]

3. Integrals of Hyperbolic Functions

xv] \int\sinh ax \,dx = \frac{1}{a}\cosh ax + C

xvi] \int\cosh ax \,dx = \frac{1}{a}\sinh ax + C

xvii] \int \tanh ax \,dx = \frac{1}{a}\log_e|\cosh ax| + C

xviii] \int \coth ax \,dx = \frac{1}{a}\log_e|\sinh ax| + C

xviiiA] \int sech x \,dx\ = \cos^{-1}(sech x)\ +\ C
= \sec^{-1}(\cosh x)\ +\ C\ = \tan^{-1}(\sinh x)\ +\ C\ = -\tan^{-1}(cosech x)\ +\ C
= \cot^{-1}(cosech x)\ +\ C\ = -\cot^{-1}(\sinh x)\ +\ C


4. Integrals of Reciprocals of Quadratic and Root Quadratic functions

xix] \int \frac{1}{\sqrt{a^2 - x^2}} \,dx = \arcsin \left(\frac{x}{a}\right) + C

xx] \int - \frac{1}{\sqrt{a^2 - x^2}} \,dx = \arccos \left(\frac{x}{a}\right) + C

xxi] \int \frac{1}{x^2 + a^2} \,dx = \frac{1}{a} \arctan \left(\frac{x}{a}\right) + C

xxii] \int - \frac{1}{x^2 + a^2} \,dx = \frac{1}{a} \,\mathrm{arccot} \left(\frac{x}{a}\right) + C

xxiii] \int \frac{1}{x\sqrt{x^2 - a^2}} \,dx = \frac{1}{a} \,\mathrm{arcsec} \left(\frac{x}{a}\right)\ +\ C = \frac{1}{a} \arccos \left(\frac{a}{x}\right)\ +\ C

xxiv] \int - \frac{1}{x\sqrt{x^2 - a^2}} \,dx = \frac{1}{a} \,\mathrm{arccsc} \left(\frac{x}{a}\right)\ +\ C = \frac{1}{a} \arcsin \left(\frac{a}{x}\right)\ +\ C

xxv] \int \frac{1}{x^2 - a^2} \,dx = \frac{1}{2a} \log_e \left|\frac{x - a}{x + a}\right|\ +\ C = \frac{1}{a}\tanh^{-1} \left(\frac{a}{x}\right)\ +\ C

xxvi] \int \frac{1}{a^2 - x^2} \,dx = \frac{1}{2a} \log_e \left|\frac{a + x}{a - x}\right|\ +\ C = \frac{1}{a}\tanh^{-1} \left(\frac{x}{a}\right)\ +\ C

xxvii] \int \frac{1}{\sqrt{a^2 + x^2}} \,dx = \log_e |x + \sqrt{a^2 + x^2}|\ +\ C = \sinh^{-1} \left(\frac{x}{a}\right)\ +\ C

xxviii] \int \frac{1}{\sqrt{x^2 - a^2}} \,dx = \log_e |x + \sqrt{x^2 - a^2}|\ +\ C = \cosh^{-1} \left(\frac{x}{a}\right)\ +\ C

5. Integrals of Root Quadratic functions

xxix] \int \sqrt{a^2 - x^2} \,dx = \frac{x}{2} \sqrt{a^2 - x^2}\ +\ \frac{a^2}{2} \arcsin {\left(\frac{x}{a}\right)}\ +\ C

xxx] \int \sqrt{x^2 - a^2} \,dx = \frac{x}{2} \sqrt{x^2 - a^2}\ +\ \frac{a^2}{2} \log_e |x + \sqrt{x^2 - a^2}|\ +\ C

xxxi] \int \sqrt{x^2 + a^2} \,dx = \frac{x}{2} \sqrt{x^2 + a^2}\ +\ \frac{a^2}{2} \log_e |x + \sqrt{x^2 + a^2}|\ +\ C

6. Integrals of Inverse Trignometric Functions

xxxii] \int \arcsin x \,dx = x \arcsin x + \sqrt{1 - x^2} + C

xxxiii] \int \arctan x \,dx = x \arctan x - \frac{1}{2} \log_e |1 + x^2| + C

xxxiv] \int \mathrm{arcsec}\,x \,dx = x \,\mathrm{arcsec}\,x\ -\ \log_e |x + \sqrt{x^2 - 1}|\ +\ C

7. Definite Integrals

xxxv] \int_{-\infty}^{\infty}{e^{-x^2} \,dx} = \sqrt \pi

xxxvi] \int_0^{\infty} x^{n-1} e^{-x} \,dx = \Gamma(n)

xxxvii] \int_{-\infty}^{\infty}\frac{\sin x}{x} \,dx= \pi

xxxviii] \int_{-\infty}^{\infty}\frac{\sin^2{x}}{x^2} \,dx= \pi

* This entry is from our old Library feature. If you know who wrote it, please let us know so we can attribute a writer. Thanks!
 
Mathematics news on Phys.org
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 105 ·
4
Replies
105
Views
6K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
11K
  • · Replies 19 ·
Replies
19
Views
3K
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K