(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

X is a discrete random variable that has a Poisson Distribution with parameter L. Hence, the discrete mass function is [tex]f(x)[/tex] = [tex]L^{x} e^{-L} / x![/tex].

Where L is a real constant, e is the exponential symbol and x! is x factorial.

Without using generating functions, what is [tex]E(X^{3})[/tex]? (the 3rd moment)

2. Relevant equations

N.A.

3. The attempt at a solution

[tex]E(X^{3})[/tex] = [tex]\Sigma x^{3} L^{x} e^{-L} / x![/tex] from the definition of Expectation. Sigma is summation over all x values.

I think I am suppose to rearrange all the terms in order to get something of the form "{summation that sums to 1} times {answer}" but I totally lost regarding what I should be manipulating the terms into. Or maybe this is the wrong approach?

A little nudging would go a long way...and please don't give me the answer outright! Thanks in advance! :)

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Statistics Question: The 3rd Moment of Poisson Distribution

**Physics Forums | Science Articles, Homework Help, Discussion**