Statistics: variable transformation proof?

Nikitin
Messages
734
Reaction score
27

Homework Statement


Ok this might be a stupid question, but:

https://fbcdn-sphotos-h-a.akamaihd.net/hphotos-ak-frc3/t31/q77/s720x720/10001118_10202561443653973_1625797585_o.jpg
Why is this the case? I think for all of this to be right, then the assumption of ##Y=u(X) \Leftrightarrow y=u(x)##. But how do I prove this?

The Attempt at a Solution



An attempt: OK, assume ##X## has a probability distribution given by ##f(x)##, and ##Y=2X## has a probability distribution of ##g(x)##. Then if ##Y = u(X)##, with w being the inverse one-on-one function of u, ##P(X=x) = P(w(Y)=x) = P(Y=u(x))=P(Y=y=u(x))##.

This is as far as I got, but now I am confused. What to do?
 
Physics news on Phys.org
You're almost there. Note by definition that

g(y) = P\{Y = y\}

and you must prove that

g(y) = f(w(y))

which is by definition

f(w(y)) = P\{X = w(y)\}

So you must somehow find why

P\{Y = y\} = P\{X=w(y)\}
 
  • Like
Likes 1 person
OK, I see. Thanks for the help :)
 
Nikitin said:

Homework Statement


Ok this might be a stupid question, but:

https://fbcdn-sphotos-h-a.akamaihd.net/hphotos-ak-frc3/t31/q77/s720x720/10001118_10202561443653973_1625797585_o.jpg
Why is this the case? I think for all of this to be right, then the assumption of ##Y=u(X) \Leftrightarrow y=u(x)##. But how do I prove this?

The Attempt at a Solution



An attempt: OK, assume ##X## has a probability distribution given by ##f(x)##, and ##Y=2X## has a probability distribution of ##g(x)##. Then if ##Y = u(X)##, with w being the inverse one-on-one function of u, ##P(X=x) = P(w(Y)=x) = P(Y=u(x))=P(Y=y=u(x))##.

This is as far as I got, but now I am confused. What to do?

You already got the answer below, but just to clarify: the one-to-one assumption is crucial. If you had a non-monotone function, such as ##u(x) = x^2##, and if the range of ##X## included both positive and negative values, then the mapping ##Y = u(X)## might not be 1:1, and so you might need a more complicated evaluation of ##P(Y = y)##.
 
Last edited:
  • Like
Likes 1 person
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top