Statistics: Verifying a Probability Proof

lema21
Messages
18
Reaction score
9
Homework Statement
Referring to figure 6, verify that P(A∩B')= P(A)-P(A∩B).
Relevant Equations
I have no idea how to start the solution and I've been looking on the web for similar questions but to no avail.
Untitled.png
 
Physics news on Phys.org
I have no idea how to start the solution
doesn't pass the PF requirements to get assistance, but what the heck: you have a Venn diagram, so colour the appropriate areas !
 
Would drawing the diagrams for the LHS and RHS be enough to verify?
 
lema21 said:
Would drawing the diagrams for the LHS and RHS be enough to verify?

It probably wouldn't qualify as a proof, but it would help show you why the probabilities are equivalent. Adding an algebraic argument in terms of a, b and c as in the proof you provided of Theorem 1, would count as a proof.
 
lema21 said:
Would drawing the diagrams for the LHS and RHS be enough to verify?
Hint: if ##a = b - c## then ##a + c = b##.
 
I assume by B' you mean the compliment of B.

Looking at the diagram what is
P(A∩B')=?
P(A)=?
P(A∩B)=?
Give the answers in terms of a,b,c. Then you will see that the equation we want to prove transforms to something that algebraically is almost obvious.
 
Thread 'Use greedy vertex coloring algorithm to prove the upper bound of χ'
Hi! I am struggling with the exercise I mentioned under "Homework statement". The exercise is about a specific "greedy vertex coloring algorithm". One definition (which matches what my book uses) can be found here: https://people.cs.uchicago.edu/~laci/HANDOUTS/greedycoloring.pdf Here is also a screenshot of the relevant parts of the linked PDF, i.e. the def. of the algorithm: Sadly I don't have much to show as far as a solution attempt goes, as I am stuck on how to proceed. I thought...
Back
Top