- #1

sanctifier

- 58

- 0

## Homework Statement

X is a random variable of binomial distribution of parameter n=10 and unknown parameter p. Hypotheses are given as follows:

[itex] H_0 \;\; : \;\; p=0.6 [/itex]

[itex] H_1 \;\; : \;\; p \neq 0.6 [/itex]

Suppose rejection region for [itex] H_0 [/itex] is [itex] \{X \leq 1\} \cup \{X \geq 9\} [/itex]

Question 1: What is the probability of type I error?

Question 2: If [itex] H_1 [/itex] is changed to "[itex] H_1 \;\; : \;\; p =0.3 [/itex]", then what is the probability of type II error?

## Homework Equations

Binomial Distribution of parameters n and p: [itex] f(x) = \binom{n}x p^x(1-p)^{n-x} [/itex]

## The Attempt at a Solution

Answer 1: Desired probability is

[itex] P(X \leq 1,\;\; X \geq 9|p=0.6)=1-P(2\leq X \leq 8|p=0.6)= 1-\sum_{k=2}^8 \binom{10}k 0.6^k(1-0.6)^{10-k} \approx 0.1689 [/itex]

Answer 2:

[itex] P(2 \leq X \leq 8|p=0.3) = \sum_{k=2}^8 \binom{10}k 0.3^k(1-0.3)^{10-k} \approx 0.617 [/itex]

Are these answers correct? Thank you in advance!

Last edited: