Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Stereographic projection in de Sitter cosmological model

  1. Sep 22, 2012 #1
    We know stereographic projection is conformal but it isn't isometic and in general relativity it can not be used because in this theory general transformations must be isometric. But de sitter in his model (1917) used it (stereographic projection) to obtain metric in static coordinates. How can it be explained
    Last edited: Sep 22, 2012
  2. jcsd
  3. Sep 22, 2012 #2


    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    Not true. In GR, any change of coordinates is legal as long as it's a diffeomorphism. There is no additional requirement.

    In GR, when you do a change of coordinates, you change both the coordinates and the elements of the metric tensor itself. The result is that everything automatically still remains consistent. You're still describing the same spacetime, and it's still a solution to the field equations. All you've done is relabel everything. As a simple exampls, if you take Minkowski space and rescale all the coordinates by a factor of 1/2, and the metric was (+1,-1,-1,-1) in the original coordinates, then the metric in the new coordinates is (+4,-4,-4,-4).

    When you talk about things like conformal transformations, you're not talking about a change of coordinates. It's more than a relabeling. For example, you can define a conformal transformation like [itex]g\rightarrow \Omega^2 g[/itex], while still leaving all the points fixed and describing them with the same coordinates. Or, alternatively, you can define conformal transformations that send points to other points, while leaving the metric the same. (This is how people typically think about conformal transformations in the complex plane.)
  4. Sep 22, 2012 #3
    thank you bcrowell. you saved me
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook