MHB Stochastic Differential Equation using Ito's Lemma

cdbsmith
Messages
6
Reaction score
0
I am new to SDE, and especially Ito's Lemma. I have a question that I simply cannot answer. It attached.

Can someone please help?
 

Attachments

  • Q1 - Itos Lemma.png
    Q1 - Itos Lemma.png
    6.8 KB · Views: 123
Physics news on Phys.org
cdbsmith said:
I am new to SDE, and especially Ito's Lemma. I have a question that I simply cannot answer. It attached.

Can someone please help?

Hi cdbsmith,

Let $u = \log y $, $\mu_t = \alpha - \beta u$, and $\sigma_t = \delta$. Then $du = \mu_t dt + \sigma_t dX_t$. Let $g(u) = e^u$. We have by Ito's lemma

$\displaystyle dg = \left(g'(u)\mu_t + \frac{g"(u)}{2}\sigma_t^2\right) dt + g'(u)\sigma_t\, dX_t $,

$\displaystyle dg = \left[e^u(\alpha -\beta u) + \frac{e^u}{2}\delta^2\right] dt + e^u\delta\, dX_t$,

$\displaystyle \frac{d(e^u)}{e^u} =(\alpha - \beta u + \frac{1}{2}\delta^2) dt + \delta\, dX_t$,

$\displaystyle \frac{dy}{y} = (\alpha - \beta\log y + \frac{1}{2}\delta^2) dt + \delta\, dX_t$.
 
Euge said:
Hi cdbsmith,

Let $u = \log y $, $\mu_t = \alpha - \beta u$, and $\sigma_t = \delta$. Then $du = \mu_t dt + \sigma_t dX_t$. Let $g(u) = e^u$. We have by Ito's lemma

$\displaystyle dg = \left(g'(u)\mu_t + \frac{g"(u)}{2}\sigma_t^2\right) dt + g'(u)\sigma_t\, dX_t $,

$\displaystyle dg = \left[e^u(\alpha -\beta u) + \frac{e^u}{2}\delta^2\right] dt + e^u\delta\, dX_t$,

$\displaystyle \frac{d(e^u)}{e^u} =(\alpha - \beta u + \frac{1}{2}\delta^2) dt + \delta\, dX_t$,

$\displaystyle \frac{dy}{y} = (\alpha - \beta\log y + \frac{1}{2}\delta^2) dt + \delta\, dX_t$.

Thanks, Euge!

But, can you explain to me the steps? Ito's Lemma is confusing for me and I'm having a hard time understanding it.

Thanks again!
 
cdbsmith said:
Thanks, Euge!

But, can you explain to me the steps? Ito's Lemma is confusing for me and I'm having a hard time understanding it.

Thanks again!

Sure, let's start with this. Suppose you have a process $dY_t = \mu_t dt + \sigma_t\, dX_t$ where $X_t$ is a Brownian motion. If $T > 0$ and $f(t, x)$ is a function that is in $C^{1,2}_{t, x}([0, T] ;(0,\infty))$, that is, continuously differentiable with respect to $t$ on $[0, T]$ and continuously twice-differentiable with respect to $x$ on $\Bbb (0,\infty)$, then $f(t, Y_t)$ satisfies the SDE

$\displaystyle df(t, Y_t) = \left(f_t + \mu_t f_x + \frac{\sigma_t^2}{2} f_{xx}\right) dt + \sigma_t f_x \, dX_t$.

This is a version of Ito's lemma which is applicable to several SDE. Now there are more general versions of the lemma which deal with cases where $X_t$ is a semi-martingale, but for your problem the above formula will do.

In your SDE, I let $u = \log y$ so that $y = e^u := g(u)$. Then I can find $dy$ by using Ito's formula with $g$. Note that $g$ is independent of $t$, so $g_t = 0$. That's how I got

$\displaystyle dg = \left(g'(u)\mu_t + \frac{g''(u)}{2}\sigma_t^2\right) dt + g'(u)\sigma_t$.

I hope this helps.
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Back
Top