Stokes' law and falling sphere method

Click For Summary
The discussion centers on the correct application of Stokes' law and the falling sphere method to calculate fluid viscosity. It highlights that the steel balls may not be falling at terminal velocity, which complicates the measurements and results. The flow around the balls is likely not laminar, violating assumptions necessary for Stokes' law. Participants emphasize the importance of sharing experimental results for better analysis and suggest examining the data for transient velocity effects. The need for precise measurements and conditions is critical to achieving consistent viscosity calculations across different ball diameters.
xenoidmaster
Messages
2
Reaction score
0
Homework Statement
I need help at calculating the viscosity of a fluid. I did an experiment of dropping spherical steel balls through a liquid. The diameter includes 5 mm, 10 mm, 15 mm, 20 mm. What makes me confuse is that the viscocity is difference for each diamater, isnt it suppose to be the same? viscocitty shouldnt be affected by diameter of the balls. As i know only terminal velocity will be affected. And so how to calculate the viscocity of the liquid, to get similar answers/small difference between each diameter.
Relevant Equations
η = 2gr^2(d'– d)/9v
where:
v is the particles' terminal velocity velocity (m/s),
r is the radius of the sphere,
g is the gravitational acceleration,
d' is the density of the falling sphere,
d is the density of the liquid,
and η is the viscosity.
In dire need of help, someone please explain the correct method for this, if its not possible what should i write in the conclusion for this?
 
Physics news on Phys.org
You say you did an experiment. What did you measure? Did you plot your results to see if the viscosity is (or is not) constant?
 
Did you loose your last thread on the topic?

https://www.physicsforums.com/threads/viscosity-by-falling-sphere-equations.1058374/#post-6978437

Your ball is not falling through the liquid (water) at terminal velocity. You have a transient (time varying) velocity to contend with (in your measurements). By solving (with help if necessary) the ODE for position vs time in the other thread you can examine what the data would "look like" if the conditions were actually met in the experiment. It is almost certain (steel ball falling in water) that the flow around the ball is not laminar. This is (likely) an unmet requirement for the equation wish to use.

You need to post the results of the experiments so it can be discussed.
 
Last edited:
xenoidmaster said:
Homework Statement: I need help at calculating the viscosity of a fluid. I did an experiment of dropping spherical steel balls through a liquid. The diameter includes 5 mm, 10 mm, 15 mm, 20 mm. What makes me confuse is that the viscocity is difference for each diamater, isnt it suppose to be the same? viscocitty shouldnt be affected by diameter of the balls. As i know only terminal velocity will be affected. And so how to calculate the viscocity of the liquid, to get similar answers/small difference between each diameter.
Relevant Equations: η = 2gr^2(d'– d)/9v
where:
v is the particles' terminal velocity velocity (m/s),
r is the radius of the sphere,
g is the gravitational acceleration,
d' is the density of the falling sphere,
d is the density of the liquid,
and η is the viscosity.

In dire need of help, someone please explain the correct method for this, if its not possible what should i write in the conclusion for this?
Let's see your calculations. How far from the walls of the container were the balls?
 
Beams of electrons and protons move parallel to each other in the same direction. They ______. a. attract each other. b. repel each other. c. neither attract nor repel. d. the force of attraction or repulsion depends upon the speed of the beams. This is a previous-year-question of CBSE Board 2023. The answer key marks (b) as the right option. I want to know why we are ignoring Coulomb's force?
Thread 'Struggling to make relation between elastic force and height'
Hello guys this is what I tried so far. I used the UTS to calculate the force it needs when the rope tears. My idea was to make a relationship/ function that would give me the force depending on height. Yeah i couldnt find a way to solve it. I also thought about how I could use hooks law (how it was given to me in my script) with the thought of instead of having two part of a rope id have one singular rope from the middle to the top where I could find the difference in height. But the...
I treat this question as two cases of Doppler effect. (1) When the sound wave travels from bat to moth Speed of sound = 222 x 1.5 = 333 m/s Frequency received by moth: $$f_1=\frac{333+v}{333}\times 222$$ (2) When the sound wave is reflected from moth back to bat Frequency received by bat (moth as source and bat as observer): $$f_2=\frac{333}{333-v}\times f_1$$ $$230.3=\frac{333}{333-v}\times \frac{333+v}{333}\times 222$$ Solving this equation, I get ##v=6.1## m/s but the answer key is...