Stokes' law and falling sphere method

Click For Summary

Homework Help Overview

The discussion revolves around the application of Stokes' law in determining the viscosity of a fluid through the falling sphere method. The original poster describes an experiment involving spherical steel balls of varying diameters dropped through a liquid, expressing confusion over the differing viscosity results for each diameter.

Discussion Character

  • Exploratory, Assumption checking, Problem interpretation

Approaches and Questions Raised

  • Participants inquire about the measurements taken during the experiment and whether results were plotted to assess the constancy of viscosity. There are questions regarding the conditions under which the balls are falling, particularly whether they reach terminal velocity. Some participants suggest examining the transient velocity and the potential non-laminar flow around the balls.

Discussion Status

The discussion is ongoing, with participants seeking clarification on experimental results and conditions. Some guidance has been offered regarding the need to analyze the data and consider the effects of diameter on viscosity, but no consensus has been reached on the correct method or conclusions.

Contextual Notes

There are mentions of potential issues with the experimental setup, such as the balls not falling at terminal velocity and the flow characteristics being possibly non-laminar, which may affect the results. The original poster is also uncertain about how to interpret the varying viscosity values for different diameters.

xenoidmaster
Messages
2
Reaction score
0
Homework Statement
I need help at calculating the viscosity of a fluid. I did an experiment of dropping spherical steel balls through a liquid. The diameter includes 5 mm, 10 mm, 15 mm, 20 mm. What makes me confuse is that the viscocity is difference for each diamater, isnt it suppose to be the same? viscocitty shouldnt be affected by diameter of the balls. As i know only terminal velocity will be affected. And so how to calculate the viscocity of the liquid, to get similar answers/small difference between each diameter.
Relevant Equations
η = 2gr^2(d'– d)/9v
where:
v is the particles' terminal velocity velocity (m/s),
r is the radius of the sphere,
g is the gravitational acceleration,
d' is the density of the falling sphere,
d is the density of the liquid,
and η is the viscosity.
In dire need of help, someone please explain the correct method for this, if its not possible what should i write in the conclusion for this?
 
Physics news on Phys.org
You say you did an experiment. What did you measure? Did you plot your results to see if the viscosity is (or is not) constant?
 
Did you loose your last thread on the topic?

https://www.physicsforums.com/threads/viscosity-by-falling-sphere-equations.1058374/#post-6978437

Your ball is not falling through the liquid (water) at terminal velocity. You have a transient (time varying) velocity to contend with (in your measurements). By solving (with help if necessary) the ODE for position vs time in the other thread you can examine what the data would "look like" if the conditions were actually met in the experiment. It is almost certain (steel ball falling in water) that the flow around the ball is not laminar. This is (likely) an unmet requirement for the equation wish to use.

You need to post the results of the experiments so it can be discussed.
 
Last edited:
  • Informative
Likes   Reactions: berkeman
xenoidmaster said:
Homework Statement: I need help at calculating the viscosity of a fluid. I did an experiment of dropping spherical steel balls through a liquid. The diameter includes 5 mm, 10 mm, 15 mm, 20 mm. What makes me confuse is that the viscocity is difference for each diamater, isnt it suppose to be the same? viscocitty shouldnt be affected by diameter of the balls. As i know only terminal velocity will be affected. And so how to calculate the viscocity of the liquid, to get similar answers/small difference between each diameter.
Relevant Equations: η = 2gr^2(d'– d)/9v
where:
v is the particles' terminal velocity velocity (m/s),
r is the radius of the sphere,
g is the gravitational acceleration,
d' is the density of the falling sphere,
d is the density of the liquid,
and η is the viscosity.

In dire need of help, someone please explain the correct method for this, if its not possible what should i write in the conclusion for this?
Let's see your calculations. How far from the walls of the container were the balls?
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
17
Views
2K
  • · Replies 29 ·
Replies
29
Views
5K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
7
Views
4K
  • · Replies 12 ·
Replies
12
Views
1K
  • · Replies 33 ·
2
Replies
33
Views
3K
Replies
16
Views
2K