Imagine a 2.2 sol mass neutron star on the brink of collapse with a radius of 12 km, an average density of 0.605e17 kg/m^3 and an average EOS of ~1/7. Based on active mass (i.e. including for pressure), the stress-energy tensor (g) would be based on [itex]g=\rho c^2+3P[/itex] resulting in g≡3.143 sol.(adsbygoogle = window.adsbygoogle || []).push({});

The neutron star goes quark-nova, throwing off ~0.6 sol mass of matter and reducing to 1.6 sol with a radius of 9 km, an average density of 1.042e18 kg/m^3 and an average equation of state of ~1/8 (though density increases, pressure appears to drop once neutrons breaking down into smaller components, i.e. quarks, hence a marginally lower EOS). Based on active mass, the stress-energy tensor for the quark star is now g≡2.2 sol.

Allowing for the mass thrown off, this makes a difference between the ns stress-energy tensor and the qs stress-energy tensor of ≡0.343 sol. Allowing for the fact that the expelled matter may carry some of this away as kinetic energy (roughly ≡0.168 sol mass) still leaves 0.175 sol mass of stress-energy 'unaccounted' for. Is it possible this could result in a gravity wave? Where exactly does the stress-energy induced by pressure come from?

source for neutron and quark star specifics-

'Neutron star interiors and the equation of state of super dense matter' by F. Weber, R. Negreiros, P. Rosenfield

http://arxiv.org/PS_cache/arxiv/pdf/0705/0705.2708v2.pdf page 3

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Stress-energy tensor and active mass

**Physics Forums | Science Articles, Homework Help, Discussion**