Undergrad Stribeck v.s. Coulomb friction law

Click For Summary
Coulomb's law describes dry friction, while Stribeck's law focuses on lubricated friction, represented by the Stribeck curve. This curve illustrates different lubrication regimes, indicating whether surfaces are in contact or separated by a hydrodynamic film, which significantly reduces friction and wear. The discovery that lubricated surfaces could be entirely separated was pivotal in the field of tribology, leading to advancements in bearing design and lubrication. An anecdote highlights the immense forces involved in hydrodynamic films, showcasing the challenges of replicating historical experiments in tribology. Understanding these friction laws is crucial for improving mechanical efficiency and longevity.
qnach
Messages
154
Reaction score
4
TL;DR
Compare Stribeck and Columb law
The friction law I learnt in high-school is Coulomb law, to my understanding.
But what is Stribeck law? What is the difference from Coulomb's law?
 
Physics news on Phys.org
It seems that the Stribeck law is a law firm concerning real estate located in Indianapolis... ;)

There is a Stribeck curve though. Coulomb's law is about dry friction. Stribeck's curve is about lubricated friction. The curve tells you in what lubrication regime you are, whether the surfaces still make contact, whether the surfaces are fully separated by a hydrodynamic film (very low friction and wear!) or somewhere in between.

That it was possible for lubricated surfaces to be separated entirely was kind of a big deal when first discovered. It means that with proper design and lubrication the wear and tear on bearings dramatically decreases. This is how the field of tribology came about (more or less, I'm not a historian ;)).

Some anecdote I remember from my study:
The forces involved in the hydrodynamic film are enormous by the way. I remember how my tribology professor tried to replicate an experiment done during the time of this discovery. There was a flat surface with a rather large and heavy (think 100/200kg) cylindrical surface on top of it. In the center of that cylindrical surface there was a hole in which lubricant could be added. (I also vaguely remember that the contact surfaces were somehow etched with some spiral shape to draw the lubricant under the cylinder, but I'm not entirely sure). To get the cylinder rotating on the surface was hard to start, but once going the cylinder would just go on an on.
At the same time lubricant would run out of that hole in the center of the cylinder. As the story goes the experimenter (not my professor, he tried to replicate this) tried to stop the lubricant to come out. Eventually he hammered some kind of cork or wooden peg into the hole with some force. After rotating a bit that peg came out with a huge BANG shooting the peg into the ceiling of the room!
Unfortunately my professor was never able to replicate this properly...
 
  • Like
  • Informative
Likes Vanadium 50, nasu, PeroK and 1 other person
For simple comparison, I think the same thought process can be followed as a block slides down a hill, - for block down hill, simple starting PE of mgh to final max KE 0.5mv^2 - comparing PE1 to max KE2 would result in finding the work friction did through the process. efficiency is just 100*KE2/PE1. If a mousetrap car travels along a flat surface, a starting PE of 0.5 k th^2 can be measured and maximum velocity of the car can also be measured. If energy efficiency is defined by...

Similar threads

  • · Replies 20 ·
Replies
20
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 26 ·
Replies
26
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
4
Views
870
  • · Replies 18 ·
Replies
18
Views
2K
Replies
5
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K