Stuck with probability question involving tree diagram?

Click For Summary

Discussion Overview

The discussion revolves around a probability question involving a tree diagram related to a golf scenario. Participants are attempting to determine the probabilities associated with Suzi's choice of golf clubs and the outcomes of her shots, specifically focusing on the probability of reaching the green in at most two shots.

Discussion Character

  • Exploratory
  • Technical explanation
  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • One participant expresses uncertainty about the correctness of the answer provided in the book (5/9) and seeks help in solving the problem.
  • Another participant suggests that the probabilities for choosing the right and wrong clubs should be equal (P(right club) = 1/2) based on the assumption that Suzi chooses randomly.
  • A different participant argues that the probability of choosing the right club should be 1/5 and the wrong club 4/5, based on the fact that there are five clubs and only one is "right" for each shot.
  • There is a suggestion to calculate the probability of reaching the green by summing the probabilities of at least one good shot or alternatively calculating the complement of both shots being bad.

Areas of Agreement / Disagreement

Participants disagree on the probabilities associated with choosing the right and wrong clubs, with some proposing a 50-50 chance and others suggesting a 1/5 and 4/5 distribution. The discussion remains unresolved regarding the correct probabilities to use in the calculations.

Contextual Notes

The discussion highlights the need for clarity on the assumptions regarding the selection of clubs and the interpretation of the problem, particularly concerning the probabilities assigned to the right and wrong clubs.

tantrik
Messages
13
Reaction score
0
Dear friends,

I'm unable to solve the following probability question. Please help me solve it. Thanks in advance. The answer given in the book is: 5/9 [for part (b)]. Don't know even if the answer is correct.

Suzi has taken up golf, and she buys a golf bag containing five different clubs. Unfortunately she does not know when to use each club, and so chooses them randomly for each shot. The probabilities for each shot that Suzi makes are shown below

Right club
--------------
Good shot - 2/3
Bad shot - 1/3

Wrong club
-----------------
Good shot - 1/4
Bad shot - 3/4

a) Use the above information to construct a tree diagram.
b) At one short hole, she can reach the green in one shot if it is 'good'. If her first shot is 'bad', it takes one more 'good' shot to reach the green. Find the probability that she reaches the green in at most two shots.


I drew the tree diagram given below. Don't know whether it is correct or not. Problem is what would be the values for P(right club) and P(wrong club). Still I don't know which outcomes should I take for finding the solution to part (b). Let me know what to do next.View attachment 5996
 

Attachments

  • Tree diagram for part (a).jpg
    Tree diagram for part (a).jpg
    20.9 KB · Views: 134
Physics news on Phys.org
tantrik said:
Dear friends,

I'm unable to solve the following probability question. Please help me solve it. Thanks in advance. The answer given in the book is: 5/9 [for part (b)]. Don't know even if the answer is correct.

Suzi has taken up golf, and she buys a golf bag containing five different clubs. Unfortunately she does not know when to use each club, and so chooses them randomly for each shot. The probabilities for each shot that Suzi makes are shown below

Right club
--------------
Good shot - 2/3
Bad shot - 1/3

Wrong club
-----------------
Good shot - 1/4
Bad shot - 3/4

a) Use the above information to construct a tree diagram.
b) At one short hole, she can reach the green in one shot if it is 'good'. If her first shot is 'bad', it takes one more 'good' shot to reach the green. Find the probability that she reaches the green in at most two shots.


I drew the tree diagram given below. Don't know whether it is correct or not. Problem is what would be the values for P(right club) and P(wrong club). Still I don't know which outcomes should I take for finding the solution to part (b). Let me know what to do next.

Hi tantrik! Welcome to MHB! ;)

You're tree diagram is fine for part b (for part a we shouldn't have the last level).

The values for 'right club' and 'wrong club' follow from "Unfortunately she does not know when to use each club, and so chooses them randomly for each shot".
It means 50-50.
That is, P(right club) = 1/2.

To solve part b, we need to sum the probabilities where at least one shot is good.
Or alternatively, which is easier, sum the probabilities where both shots are bad (the complement), and subtract it from 1.
 
I believe (trembling with terror) that I like Serena is wrong. Since there are 5 clubs and Suzi chooses the club for each shot at random, then (assuming there is exactly one club that is "right" for each shot), the probability Suzi chooses the right club is 1/5, the probability Suzi chooses the wrong club is 4/5.
 
I agree with HallsofIvy.
Oh, and sorry for coming down a bit hard last time round.
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
946
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
2
Views
4K