Substituting functions in limits

  • Thread starter Thread starter Arnoldjavs3
  • Start date Start date
  • Tags Tags
    Functions Limits
Click For Summary
The discussion revolves around understanding the substitution of variables in limits, specifically in the context of evaluating the limit $$\lim_{x \to 1}\frac{f(x^3-1)}{x-1}$$ given that $$\lim_{x \to 0}\frac{f(x)}{x} = -\frac{1}{2}$$. The solution involves recognizing that as x approaches 1, the expression simplifies to $$\lim_{u \to 0}\frac{f(u)}{u}$$ where u is defined as $$u = x^3 - 1$$. Participants clarify that the limit remains unchanged despite the variable substitution, as the limits are equivalent regardless of the variable name. The final answer to the limit is confirmed to be -3/2, reinforcing the understanding of limit behavior under variable changes.
Arnoldjavs3
Messages
191
Reaction score
3

Homework Statement


I'm trying hard to understand as my professor hasn't taught(nor does my textbook) on how this works.

It is known that $$\lim_{x \to 0}\frac{f(x)}{x} = -\frac12$$

Solve
$$\lim_{x \to 1}\frac{f(x^3-1)}{x-1}.$$

Homework Equations

The Attempt at a Solution


OK.. so I do this:
$$\begin{align}\lim_{x \to 1}\frac{f(x^3-1)}{x-1} &= \lim_{x \to 1}\frac{f(x^3-1)}{x-1}\cdot\frac{x^2+x+1}{x^2+x+1} \\ &= \lim_{x\to 1}\frac{f(x^3-1)}{x^3-1}(x^2+x+1) \\ &= \lim_{x\to 1}\frac{f(x^3-1)}{x^3-1}\lim_{x\to 1}(x^2+x+1) \\ &= \lim_{u\to 0}\frac{f(u)}{u}(3) \end{align}$$
$$(3)(-1/2)$$

Now my question is... why is it that $$lim_{u \to 0}\frac{f(u)}{u} = \lim_{x \to 0}\frac{f(x)}{x} = -\frac12 $$

I thought that the limit changes when you substitute variables? So when we substitute ##u = x^3 -1## the limit becomes u approaches 0 as when you substitute x=1 into the above, you get u = 0. Am I wrong on this??

Note that the answer is -3/2.
 
Last edited:
Physics news on Phys.org
Arnoldjavs3 said:

Homework Statement


I'm trying hard to understand as my professor hasn't taught(nor does my textbook) on how this works.

It is known that $$\lim_{x \to 0}\frac{f(x)}{x} = -\frac12$$

Solve
$$\lim_{x \to 1}\frac{f(x^3-1)}{x-1}.$$

Homework Equations

The Attempt at a Solution


OK.. so I do this:
$$\begin{align}\lim_{x \to 1}\frac{f(x^3-1)}{x-1} &= \lim_{x \to 1}\frac{f(x^3-1)}{x-1}\cdot\frac{x^2+x+1}{x^2+x+1} \\ &= \lim_{x\to 1}\frac{f(x^3-1)}{x^3-1}(x^2+x+1) \\ &= \lim_{x\to 1}\frac{f(x^3-1)}{x^3-1}\lim_{x\to 1}(x^2+x+1) \\ &= \lim_{u\to 0}\frac{f(u)}{u}(3) \end{align}$$

Now my question is... why is it that $$lim_{u \to 0}\frac{f(u)}{u} = \lim_{x \to 0}\frac{f(x)}{x} = -\frac12 $$

I thought that the limit changes when you substitute variables? So when we substitute ##u = x^3 -1## the limit becomes u approaches 0 as when you substitute x=1 into the above, you get u = 0. Am I wrong on this??

Note that the answer is -3/2.
You may name the variable whatever you like:
Whether it's ##\lim_{u \to 0}\frac{f(u)}{u}\;## or ##\; \lim_{\text{ tree} \to 0}\frac{f(\text{tree})}{\text{tree}}\;## or ##\;\lim_{x \to 0}\frac{f(x)}{x}##

Or wasn't that the question and it's about the previous steps?
 
fresh_42 said:
You may name the variable whatever you like:
Whether it's ##\lim_{u \to 0}\frac{f(u)}{u}\;## or ##\; \lim_{\text{ tree} \to 0}\frac{f(\text{tree})}{\text{tree}}\;## or ##\;\lim_{x \to 0}\frac{f(x)}{x}##

Or wasn't that the question and it's about the previous steps?

I was asking why is it that lim u-> 0 f(u)/u = lim x -> 0 f(x)/x in the last step of the solution.
 
It is simply the same, identical. First, ##u## is simply an abbreviation of ##x^3-1##. But then we forget about the origin of ##u##, because it doesn't matter anymore. Once we have it, we can concentrate on the expression ##\lim_{u \to 0}\frac{f(u)}{u}## and we are free to rename it.
If it feels better for you, then how about changing the given condition for ##f## to ##\lim_{v \to 0}\frac{f(v)}{v}=-\frac{1}{2}## and substitute another time ##v=u## at the end of the proof?
 
  • Like
Likes Arnoldjavs3
fresh_42 said:
It is simply the same, identical. First, ##u## is simply an abbreviation of ##x^3-1##. But then we forget about the origin of ##u##, because it doesn't matter anymore. Once we have it, we can concentrate on the expression ##\lim_{u \to 0}\frac{f(u)}{u}## and we are free to rename it.
If it feels better for you, then how about changing the given condition for ##f## to ##\lim_{v \to 0}\frac{f(v)}{v}=-\frac{1}{2}## and substitute another time ##v=u## at the end of the proof?

If it is the same, then that's enough for me to know. Thanks!
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
17
Views
2K
Replies
4
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 2 ·
Replies
2
Views
938
  • · Replies 31 ·
2
Replies
31
Views
2K