MHB Substitution Method to solve linear simultaneous equation

AI Thread Summary
The discussion focuses on solving a system of linear equations using the substitution method. The user transformed the equations into a common denominator and derived two equations: 5y - 5x = 1 and 5y + 2x = 5. After substituting, they found x = 4/7, but expected the solution to be x = 0. A suggestion was made to multiply the first equation by 6 and simplify to potentially correct the solution. The conversation highlights the importance of careful manipulation of equations in the substitution method.
Yazan975
Messages
30
Reaction score
0
View attachment 8419

What I have done:

I changed all fractions to common denom and that gave me

5y-5x=1 (1) *I numbered the fractions
5y+2x=5 (2)

Then: 5y=5-2x

Substitute into equation 1
(5-2x)-5x=1
5-7x=1
x=4/7

Thing is my answer says I should be getting x=0

Any hints?
 

Attachments

  • Screen Shot 2018-09-18 at 5.48.11 PM-min.png
    Screen Shot 2018-09-18 at 5.48.11 PM-min.png
    10.6 KB · Views: 115
Mathematics news on Phys.org
When you multiply the first equation by $6$ and simplify, you should get $y-5x=1$.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top