Suggestions for Calculus I honors projects?

Click For Summary
SUMMARY

The discussion centers on selecting an honors project for Calculus I, specifically within the context of physics. The user is considering topics such as the Calculus of rainbows, Lagrangian Mechanics, and rocket propulsion, with a focus on Newton's 2nd Law and the effects of air resistance. The user has tentatively chosen to model the Saturn V rocket, as it offers ample research material. The project requires a minimum of eight pages, with at least one-third dedicated to calculations.

PREREQUISITES
  • Understanding of single-variable calculus, including derivatives and integrals.
  • Familiarity with Newton's Laws of Motion, particularly Newton's 2nd Law.
  • Basic knowledge of differential equations and their applications in physics.
  • Concepts of air resistance and its impact on motion.
NEXT STEPS
  • Research the mathematical modeling of rocket propulsion, focusing on changing mass systems.
  • Study the integration techniques necessary for solving differential equations in physics.
  • Explore the physics of air resistance and its mathematical representation in motion equations.
  • Gather resources on the Saturn V rocket, including historical data and scientific analyses.
USEFUL FOR

Physics majors, calculus students, and anyone interested in applying calculus to real-world physics problems, particularly in classical mechanics and rocket science.

QuantumCurt
Education Advisor
Messages
726
Reaction score
166
Hey everyone, I was hoping I could get some input on this. I'm taking an honors section of Calculus I this semester, and part of the course involves a cumulative honors project. It has to be a minimum 8 page paper, at least a third of which has to be actual calculations, about a topic that goes above and beyond the actual scope of the class.

I'm a physics major, so I'm trying to find a physics related topic that would be within the scope of this project. I was considering doing something involving the Calculus of rainbows, but the more I've looked into it, it seems like it would be an extremely complicated topic. A couple of my friends are trying to convince me to do it on Lagrangian Mechanics...but that's seeming like it would be an very complex project. I haven't even started calculus based physics yet, so I feel like that may be too much to take on.

I'm having trouble coming up with ideas. I'm doing a project on the formation, life cycle and properties of black holes for the cumulative honors project in my physics class, so something that kind of ties into that concept would be cool. But it by no means has to be related to that project at all.

Does anyone have any ideas? Any suggestions would be much appreciated!
 
Physics news on Phys.org
In calculus 1, you have only just covered derivatives of single variable functions, yes?

in 1D kinematics, let's say you throw a ball up vertically in the air.

If we neglect air drag position function will be approximately quadratic :y(t) = y(0) +v(0)t -1/2 gt^2.
What is the velocity as a function of time v(t)?
What is the acceleration a(t)?

Since the velocity is the derivative of the position, and the acceleration is the derivative of the velocity, you can figure out what v(t) and a(t) are, no matter what y(t) is.

What about if we don't neglect air drag?
I know that if you assume the air drag is proportional to the velocity, you can solve the differential equation to get the position y(t). In your case, I would look up the position function, and take derivatives to see what the velocity and acceleration do?
 
jfizzix said:
What about if we don't neglect air drag?
I know that if you assume the air drag is proportional to the velocity, you can solve the differential equation to get the position y(t). In your case, I would look up the position function, and take derivatives to see what the velocity and acceleration do?
I wish to elaborate on this.

Let's take a really simple example. Suppose we have an object of mass ##m##, with initial speed zero, in free fall. Thus, if we were to draw a free body diagram, we'd have two forces: weight pulling down with magnitude ##mg## and a resistive force pushing up with magnitude proportional to the speed of the object. Thus, we have the net force, assuming mass doesn't change, as ##\sum \vec{F}=m\vec{a}=mg-kv##, where I've chosen down as the positive direction. We know that acceleration is the derivative of velocity, so, dividing by ##m## gives us ##v'=g-\frac{k}{m}v##, which is separable. With a little knowledge of integration, you can solve for velocity.
 
So far we've covered a chapter on limits, and we're just about done with the chapter on differentiation. We've mostly covered derivatives in one variable, but the last section we did was on implicit differentiation of equations in two variables. We're just about done with this chapter. We only cover 4 chapters in this class. The next chapter is on applications of the derivative and the last chapter will be on integration. I'm likely going to have to jump ahead and learn integration sooner though, to complete just about any project I could do for the class.

I'm strongly considering something related to classical mechanics. I was talking to my physics professor earlier today after I turned in the proposal for my honors projects in my physics class, and he recommended rocket propulsion, which seemed like a good idea to me. It would involve Newton's 2nd Law very heavily, obviously. The force is constantly changing as the rocket is accelerating, due to the change in mass resulting from spent fuel. It would involve some integration and some basic differential equations, but he said that it should be well within the realm of what I could reasonably accomplish in this project.

That would tie in fairly closely to what you guys are recommending, because air resistance would have to be factored in.

Does that seem like a good idea?
 
QuantumCurt said:
So far we've covered a chapter on limits, and we're just about done with the chapter on differentiation. We've mostly covered derivatives in one variable, but the last section we did was on implicit differentiation of equations in two variables. We're just about done with this chapter. We only cover 4 chapters in this class. The next chapter is on applications of the derivative and the last chapter will be on integration. I'm likely going to have to jump ahead and learn integration sooner though, to complete just about any project I could do for the class.

I'm strongly considering something related to classical mechanics. I was talking to my physics professor earlier today after I turned in the proposal for my honors projects in my physics class, and he recommended rocket propulsion, which seemed like a good idea to me. It would involve Newton's 2nd Law very heavily, obviously. The force is constantly changing as the rocket is accelerating, due to the change in mass resulting from spent fuel. It would involve some integration and some basic differential equations, but he said that it should be well within the realm of what I could reasonably accomplish in this project.

That would tie in fairly closely to what you guys are recommending, because air resistance would have to be factored in.

Does that seem like a good idea?
That sounds like an excellent idea. Just remember that, when mass changes, Newton's second law becomes ##\sum \vec{F}=\dot{p}##, where ##\dot{p}## is the derivative of momentum with respect to time.
 
Mandelbroth said:
That sounds like an excellent idea. Just remember that, when mass changes, Newton's second law becomes ##\sum \vec{F}=\dot{p}##, where ##\dot{p}## is the derivative of momentum with respect to time.

Thanks for the tip. I've got a lot of research to get done. My calculus teacher has tentatively approved the topic though. He wants me to specify a little bit more the exact type of problem I'd be doing.

I think I'm going to model it after the Saturn V rocket, since I imagine there's a plethora of data available on it.

Does anyone have any links to some good articles/papers about rocket physics that would be relevant to this? Any recommendations on how to further narrow the topic down?
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 1 ·
Replies
1
Views
532
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 1 ·
Replies
1
Views
4K